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ANNO'IATION

The book contains theoretical studies of the strains

in reinforced thin-walled elements (plates, slabs,

shells) and their stiffening ribs. The results obtained

are mostly presented as tables and graphs.

This book will be useful to scientists, lecturers in

strength of materials and theory of elasticity, and

designers.
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FOREWORD

Thin-walled structures made of thin plates and shells reinforced by

thin stiffening ribs are increasingly being used of late.

While these reinforcing elements add only negligibly to the total weight

of the structure, they influence considerably its strength, rigidity, and

stability. The necessity of designing such structures increased the

interest in theoretical and experimental studies of the states of stress and

strain of these structural elements (plates and shells reinforced by

stiffening ribs).

The first analyses of thin plates and slabs reinforced by straight ribs

were performed byG. B ubnov and B.G. Galerkin /6, 19, 20/. The first

results in the study of thin plates reinforced around holes are due to

S.P. Timoshenko, who applied the methods of strength of materials, based

on the theory of curved bars, to the problem of reinforcements around

circular and square holes with rounded corners. V.L. Fedorov ]139/ was

the first to use methods of the theory of elasticity to study the extension of

an elastic plane with a circular hole into which an elastic ring is inserted.

Much attention has been paid during the last fifteen years to the effects

of stiffening rings, especially after A cad. N.I. Muskhelishvili and his school

had developed efficient methods for solving the two-dimensional problem

of the theory of elasticity (Kolosov and Muskhelishvili's methods of complex

potentials). These methods made it possible not only to formulate this

contact problem in its most general form, but also to solve it for many
hole shapes.

In view of the mathematical similaritybetween the two-dimensional problem

of the theory of elasticity and the problem of the bending of thin plates,

A.I. Lur'e and S.G. Lekhnitskii applied the methods of complex potentials

to the problems of bending of isotropic and anisotropic plates.

Large-scale studies of stress concentrations around holes with edges

reinforced by elastic ribs began with Mikhlin's paper /77/on the elastic

equilibrium of a circular nonhomogeneous rib consisting of several

concentric rings. In papers ]114, i15/, Acad. I.N. Mushkelishvili's

method was used to solve problems on the stresses in an unbounded plate

with a circular hole into which a ring or washer of different material has

been welded or inserted under prestressing. These studies were mainly

carried out in L'vov andKiev, and their main results have been published

by C.N. Savin /I18/, D.V. Vainberg /8/, andM. P. Sheremet'ev ]187/.

The present book contains the results of twelve years' studies by the

authors and their pupils of the following subjects: l) analysis of stress

concentrations in plates and shells reinforced by stiffening ribs; 2) efficient

design of the reinforcing elements, aiming at an optimum structure of thin

plates and shells with ribs.

The detailed table of contents eliminates the need to discuss the various

chapters in the foreword.
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The above-mentioned papers ]8, I18, 187/ contain very detailed

bibliographies on the many problems discussed in them; a thorough survey

of the papers written on this subject was given by Goodyear /34].

References are given where necessary in this book. Here we shall consider

the general formulations of the contact problems of reinforcing the edges

of holes in thin plates.
In earlier studies the elastic rib was assumed to be wide enough for its

state of stress to be described by the equations of the two-dimensional

theory of elasticity or the theory ofbendingof thin plates. In this

formulation the problems were solved relatively easily for simple and

compound circular ribs. The problem of reinforcing the edges of noncircular

holes is far more difficult, and a simplification, yielding a more or less

acceptable (although approximate) solution, can be obtained only by greatly

restricting the choice of the rib shape. Such a simplification is possible
with ribs whose outer and inner contours form coordinate curves.

The stiffening ribs for thin plates whose cross sections have irregular

profiles, have uniform or variable cross sections; their elastic behavior

is described by the theory of small deformations of thin curved bars. This

simplified formulation of the contact problem permitted in many particular

cases study of the effects of reinforcing by a circular rib, and its optimum

design. With holes shaped like ellipses, squares, triangles with rounded

corners, etc., the problem of edge reinforcement by thin elastic ribs is

very difficult in this formulation, and could only be solved by successive

approximations.
Formulation of the contact problem of reinforcing a thin plate by a

sufficiently thin curved rib was further simplified by approximating the

boundary conditions. It is thus assumed that the stiffening rib undergoes

only tension or compression in the case of the two-dimensional problem,

or flexure in its own plane in the case of bending like a thin plate. Using

this mathematical model, a solution of the unified contact problem was

obtained for the exterior of an elliptic hole whose edge is reinforced by a

rib of uniform cross section. This solution, obtained by quadratures, can

be generalized to apply to any hole having no corners.

There are thus three ways to formulate contact problems of reinforcing

the edges of holes by elastic ribs. The region of application of each variant

still remains unknown; it can only be determined accurately on the basis

of experimental data and of exact solutions obtained for the combined state

of strain of a plate with a hole into which a hollow cylinder has been welded.

The general theory of structures consisting of thin plates and shells

reinforced by stiffening ribs should include methods for analyzing the

elements of such structures. This would make it possible to take into

account the combined state of strain and the interaction between plates (or

shells) and thin ribs, permit optimization of reinforcing elements and of

their disposition, and enable, e. g., structures of minimum weight to be

designed.

This book, which greatly enlarges upon some chapters of ]118] published

in 1951, is devoted to a theoretical study of the combined state of strain of

thin-walled elements (plates and shells) and of the ribs reinforcing them.

The most important results referring to the interaction between stiffening

ribs and plates or shells are given as simple formulas, graphs, and tables.

The designer can thus draw the necessary conclusions without entering into

the subtleties of the fairly involved theory.
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Chapter I

GENERAL THEORY OF BENDING OF

THIN PLATES

§1. FUNDAMENTAL DIFFERENTIAL EQUATION

Consider the elastic equilibrium of a homogeneous isotropie thin plate

of arbitrary contour, subjected to a load q(x, y) normal to its plane. The

plate thickness is h= constant. A classification of plates according to the

state of stress is given in ]94[ and [17[. The fundamentals of the theory
of bending of thin plates are found in /19, 61, 63, 64, 80, 90, 94, 136/.

We select the middle plane of the plate as x, y-plane, the Z-axis pointing

downward (Figure 1). Let w(x, y) be the deflection, i. e., the Z-component

of the vector of displacement of the points lying in the middle plane of the
plate being bent.

We shall adopt the following hypotheses of Kirchhoff.

a) Linear elements, perpendicular to the middle plane of the plate

before deformation, remain linear and perpendicular to the middle surface

of the plate after deformation (hypothesis of straight normals).

b) The stresses az, normal to the middle surface, are small compared

with the two other normal-stress components ax and ay inside the plate; it

can therefore be assumed, when determining ax and au, that Oz = 0

everywhere inside the plate (hypothesis of plane state of stress).

In addition, it will be assumed that the plate deflections are small

compared with the thickness h, and that the edges can move freely in their

plane. This means that the 1 ...... _ the ................ pl te areele.Llll:::ll_ ul r_'llUUlt:: [,J.tctlltz_ Ok LII_ a

not extended or compressed during bending. Under these assumptions the

x- and y-components u(x, y, Z) and v(x, y, Z) of the vector of displacement of

the plate points are (Figure 2):

u(x, y, Z) = --Z _--_I,

v (x,y, z) = -z _|
ay I

(1.1)

h
where ]Z] _-is the distance in the undeformed state of a plate point from

the middle plane. Hence, the strain components e, ey, and "Gy are:

ex=--Z_, 8y 0-_' ¥,,w--Oy Ox=--2Za-_-y • (1.2)



z

FIGURE 1. FIGURE 2.

x

For an isotropic plate the relationships between the stress components

°x, %'_xu, _yz, Tzx and the strain components are (for az = O)

1 (o" -- Way) = --Z O_ 1 --Z Ouwl

8z = -- _ (% + %)

2(1+v) , 2(1+v)
Yuz = E ruz, YZx = E Tzx

Yxu= 2(l + v) "_xy=--2Z Ohv
E OxOy

(1.3)

where v is Poisson's ratio, and E, Young's modulus.

It follows from the first, second, and sixth equations (1.3) that

(Yx _

(Iv

_xv =

EZ /O_w 0_\ I

1Z-,2 /0--_+_'0_)[

EZ /o'w O'w\ I

_Ez I
1 + v axOy

(1.4)

The stress components must satisfy the equilibrium conditions

0 ¢_x O'_xu O'_xZ '_

a;. +_-y +_--° I
0%_ 0% OTyz I

--_- + _- + -82-= oI •
O'_z,, O'rz_ 0% I

+w =°l

(1.5)



We multiply the first two equations (1.5) by ZdZ and the third by dZ, and
h h

integrate over the plate thickness from --_- to +-_. This yields

OM x OHxy ii

OHx_ OMy
-_ + _-- N_ = ,

ON ONy
_+_+q=0

(1.6)

where M x and My are the bending moments, H._ is the twisting moment,

and N. and N u are the shearing forces per unit length of the plate section:

h

+_-

_/O_w O:w
M= S %ZdZ=--D Ib_ + "0"_ )

h

2

h

+y

h

--_-

h

+T

. 02wH,._ _ T Zd.Z _ -- D (1 --v) _y-

2

(1.7)

h

+-5"

-T

D'°

2

(1.8)

where

Eh' (1.9)
D= 12 (1 __vi-----"--_

is the flexural rigidity of the plate.

Substituting (1.4) in (1.5) and integrating with respect to Z, the boundary

conditions being

_.z=_wz =0 or Z= d-h,



we obtain

4Z'--h s 0 /02w 02w\

_z=E" 8(1--v9 _['_T-I-"_')I "

4z,- a_ o I o,_ + o'_ _l
_=E. 80__,) _k-O_- _-]j

(1.1o)

Comparison of (1.7) with (1.4) and of (1.8) with (1.10) yields

12Z .
%, = _/Hx

12Z M

12Z ,
Txy _ _ F1xg )

%z = 3 (h'_4Z _)N_

3 (h2 --4Z_)
"rvz -- 2h 3 Nv

(1.11)

It follows from (1.11), (1.7), and (1.8) that the state of stress of the

plate is completely defined if its deflection w(x, y) is known.

We derive the differential equation which the function w(x,y) must satisfy

by substituting the expressions for N x and Ny from (1.8) in the third equation
(1.6). The result is

o_w - 04w 04w 1

Ox---c+'z ox--;V_o_,+ _-_ = -_ q (x, u), (1.12)

or

q (1.13)Aaw = -_-,

( O* O'
where A = _0--_- + _] is the Laplacian and q = q(x,y). This basic differential

equation of the theory of bending of thin plates is called the equation of
Sophie Germain.

In the particular case q(x,y)=O, when the plate is bent only by moments

and forces applied at the edges, (1.13) becomes

AAw = O, ( 1.1 4)

i.e., the deflection function w(x,y) is biharmonic.

Airy's stress function in the two-dimensional theory of elasticity is also
biharmonic. This similarity in the mathematical formulation of these

problems made it possible to apply the powerful method of Muskhelishvili

to solve problems in the theory of bending of thin plates /10, 63, 65, 82/.



The problem of the bending of a thin plate is thus reduced to integrating

(1.13) or (1.14) with boundary conditions depending on the manner of

supporting the plate edges.

Polar coordinates (r, 8) are used for problems of circular and annular

plates, r being the distance of the point considered from the pole (the origin

of the cartesian coordinates), and 0, the polar angle, measured clockwise
from the x-axis.

In this system (1.13) becomes

( c_ l a l a,)(a,_ I am l a,m\ qAAw= -3_- + r._- + 7i-_i -_- + .7-..._ + -.;i._@-i. ) = D-.
(1.15)

The moments (1.7) and shearing forces (1.8), expressed in polar

coordinates (r, e)(cf., e.g., ]136], Chapter VII): are

_fO_. v _ v O'w\ i

(1.16)

N, D-_r(AW), 1 a= -- N o = -- D r"_ (am),

where the Laplacian A is

a, 1 0 1 6*
a = M-_-+-;-._- +_.3- _ .

(1.17)

(1.1a)

In the case of axisymmetricalbending of circular or annular plates, the

deflection function is independent of the polar angle 0, i.e. , w = w(r).

Equations (1.16) and (1.17) then become

D / d_w __.dw'_

H,i = 0, N i= 0

d A
N, =--O_(w)

(1.19)

where

1 d
a = -_-_+ 7. _. (1.20)



§2. COMPLEX REPRESENTATION OF

THE GENERAL SOLUTION. DEGREE OF

DETERMINACY OF THE FUNCTIONS

q_(z) AND _(z)

The general integral of (1.13) is written in the form of the sum

w (x, y) = w t(x, y) + w ° (x, y), ( 1.21 )

where w_(x,y)=wt is the general integral of tile biharmonic equation (1.14),
and w °(x,y) = w° is any single- valued particular solution of (1.13).

Applying Muskhelishvili's method /82/, we represent the biharmonic

function w_(x,y), according to Goursat's formula, by two analytical functions

qD(z) and X(z) of the complex variable z=x+iy:

wI = 2 Re lzqD(z) + X (z)l. (1.22)

Substitution of (1.22) in (1.21) yields the general integral of (1.13) in the

form

w (x, y) = 2 Re [}qD(z) + X (z)l + w ° (x, y). ( 1.23)

The bending moments (1.7) and shearing forces (1.8) are with

(z) = dx (z) 1 63/:
dz "

M_ = M ° -- D {2 (1 + v) [qf (z) + qf (z)l +(1 -- v) _ q¢ (z)+

+ zqf (z) + ,' (z) + ",p'(z)l}

My = M ° -- D {2 (l --k 'v) [q_'(z) + ¢p' (z)l -- (1 -- 'v)_q_" (z) q-

+ z_" (z) + _' (z) + ap' (z)l}

H_u = -- iD (1 -- v) [z¢" (z) --kxp' (z) -- z¢_"(z) -- ap' (z)] +H°xu

N_ = -- 8DRe [q_"(z)] + N o

Ny = -- 8D Re [i_" (z)l q- N_

(1.24)

where M °, M°_, Hx%, N ° , Nu° are single-valued, being given by (1.7) and (1.8)

when w is replaced by w 0.

We introduce the following complex combinations of these magnitudes:

M u _ M: + 2iH,:_ = 4D (1 -- v) [}q_"(z) + _' (z)] +

+ (_o _ Mo + 2too)

Mx + Mu -- -- 4D (1 -t- v)[q¢ (z) + (p' (z)l + (M ° + Mu°)

N_-- iA'. = -- 8D_"(z)+ (_v_--iN_)

We also rewrite (1.1) in the form

= -- (Ow_dx . Ow_ _ (__ + t__ ) Z =u + iv + t-gff ) Z Ow° . #_o

= -- 2 [, (z) + z,' (z) + ,(z)lZ-- (_-x ° + iO_)Z.

. (1.25)

(1.26) _



It followsfrom (1.25)thatfor a givenstateof stressin theplate, i.e.,
for knownvaluesof M,,_ v, and Hxu, the functions q0(z) and _(z) are fully

determined except for expressions of the form

iCz + a* + i6" and a*' + i6", respectively ( 1.27)

where C, a*, 6*, a*', 6*' are real constants. It is thus possible to add the

expressions iCz--_a* _i6" to the function _(z) and a*'+i_*" to the function _p(z)

without affecting the state of stress in the plate.

Thus, in a complex simply-connected domain 8, with the origin of

coordinates at any point of the domain, we can require that

lm[_'(0)]=0, q0(0)=0, _(0)=0. (1.28)

where I,, is the imaginary part of the expression in brackets.

Let the domain be infinite (for instance, an unbounded plate with a hole)

and the origin of coordinates lie outside the domain S, i. e., inside the

hole. For finite stresses at infinity, (1.28) can then be written

Im[_'(¢o)l=0, ¢_(¢_)=0, _(¢_)=0. (1.29)

Conditions (1.28) or (1.29) eliminate completely the indeterminancy of the

functions ¢?(z) and $(z) when the state of stress in the plate is given.

Setting w °=0, we substitute in (1.23) and (1.26) the functions

_(z) = iCz + a* + i_* and _ (z) = a*'+ i6" or X(z) = (a*' -'k i_*')z+ a*"+ i[W, where a*" and

6*'are real constants. The components of the displacement vector of the

plate points are then

u (x, y) = -- 2 (a* -'k a*') Z '1

v (x,u) = -- 2(6*-- _*')z ]w (x, y) = 2 (a* -t- a*') x -k-2 (6* -- 6") g + 2a*"

(1.30)

These expressions define a rigid-body displacement of the plate, as ought

to be expected.

We shall now determine how much the indeterminacy of the functions

_(z) and $(z) is reduced by specifying the plate deflections. The state of

stress in the plate is then completely determined, so that the functions q_(z)

and ,(z) are again obtained except for expressions (1.27) which must not

affect the plate deflections.

It therefore follows from (1.30) that

a*+a*'=O, 6*--6*'=0, a*'=0. (1.31)

Thus, when the deflections are given only the constants C and 6"", and

one of the pairs (a*,6*) or (a*',6*'), are arbitrary.

§ 3. GENERAL FORM OF THE FUNCTIONS

_(z), _z), AND X(z)

If the domain of the plate is simply connected, the functions _(z) and _(z)

are single-valued in it, but if the domain is multiply-connected, the



functionsqD(z)and_(z) may be multiple-valued. We are interested in the

case when the plate is weakened by N holes. If the plate dimensions are

finite, we have a multiply-connected domain delimited by N + 1 simple

closed contours; one ofthem(Lt_+,) is the external contour of the plate,

while the other L/(]= l, 2..... N) are the contours of the holes (Figure 3).
It is assumed that these contours have no common points. We shall

determine the form of the functions ¢p(z) and ${z) in the case of a multiply-

connected domain /82, pp. 120-124]. The origin of coordinates is placed

at the center of one hole. It follows from the second equation (1.25) that

the real part of ¢p'(z) is single-valued. The imaginary part of this function

increases by 2n/A t, for each clockwise pass along any closed curve L_

surrounding one of the contours L_(k= 1,2 ..... N), where A k is a real constant.

Such an increment will obviously be obtained if we take the function in the
form

N

,p' (z) = ¢_: (z) + _.. At ln(z-- zk), (1.32)

where % z_..... z_ are arbitrary points inside the contours L_, L_ .... ,L_, and

¢p:(z) is a single-valued function, holomorphic in the multiply-connected
domain S.

LN÷t

FIGURE 3.

Integration of (1.32) yields

N N

¢p(z) = _.. Akz ln (z -- zt) + _ (at +ill,)In (z-- z_) + ¢p*(z), (1.33)
k==l k_l

where at and gk are real constants, and ¢p*(z) is a new single-valued function.

It follows from the first equation (1.25) that $'(z) is a single-valued function.

Therefore ,p(z) = _ _'(z)dz becomes

N

,_ (z) = _ (a'k + iriS) In (z -- zk) + ** (z), (1.34)
k_l

where a_ and g't are real constants, and _*(z) is a bolomorphic single-valued

function. The function X (z) = _ _ (z) dz has the form

N

X(z) = _] [(a't + i[l'k)z+ (a'k+i_',)lln(z--z h) + X* (z), (1.35)



wherea_ and _ are real constants, and X*(z) is a holomorphic single-
valued function.

The displacement components u and v are assumed to be single-valued
functions. It therefore follows from (1.26) that

{u -4- iv}L,k = -- f_ (z) -t- z_' (z) -4-* (Z)}L,kZ= 0, (1.36)

where the sign { }L_ denotes the increment of the expression between

braces for each complete clockwise pass along any curve L_. Substitution

of the functions q_(z) and xb(z) found above yields

%--a'k=O, [3k+ [_'k= O. (1.37)

In addition, the deflections w(x,y)given by (1.23) must be single-valued:

{w(x, Y)}L_= {[_ (z) + x (z) + z_ (z) + x (z)}L, = o. (1.38)

Substituting (1.33) and (1.35) in (1.38), and taking (1.37) into account, we
obtain

_=0. (1.39)

We conclude by virtue of (1.37) and (1.39) that the functions ¢p(z), "_(z),
and X (z) must have the form

N N

¢p(z) = _ A,z In (z-- zk) -4-_ akin (z--zk) + ¢_*(z)
k_l k_l

N

* (z) = _ a, In (z -- zk) -4-_b*(z)
k_l

N

X(z) = _ (aez + a_) In (z-- Zk) + X* (Z)
kll

(1.40)

where a, = ah-4- t_k. The functions tp* (z), ** (z), X* (z) are single-valued and

continuous in the plate domain except possibly at the boundary and at infinity.

§ 4. PRINCIPAL VECTOR AND PRINCIPAL

MOMENT

We shall determine the principal vector _ and the principal moment /_

of the forces applied to the contour L' of part S* assumed cut out of the

plate and bounded by the contours L" and L" (Figure 4).

We ass ume that no transverse load acts: q (x, y) = w° (x, y}- 0, and that the part

considered is subjected only to stresses Xn, Yn, Zn, acting on it along L',

due to the remainder of the plate;

X n = % cos (n, x) + _x_cos (n, y) + _.zCOS(n, Z) ]

Y_ = _y_ cos (n, x) + a cos (n, y) + zyzcos (n,Z) I" ( 1.41)

Z. = Tz_cos (n, x) + _z_COS(n, y) + _zcos (n, Z)J



x.

y n

Z.

FIGURE 4.

Since cos(n,Z)=0 and %=0 we obtain by virtue of (1.11):

X. = _ [M. cos (n, x) +/'/._ cos (n, y)] I

v. = _m._ _os(n,x)+ M,,_os(n,y)J I'

I

Zn = 3 (h'_-h?Z_) [Nxcos (n, x) + Nu cos (n, y)l]

(1.42)

where n is the outer normal relative to S*, and

dy dx (1.43)
cos (n, x) = ds " cos (n, y) = _.

The principal vector of the forces X_, Yn, Z_ applied to the contour L" is
directed along the Z-axis:

+-/-

Szndzds ( 1.44)

The projections on the coordinate axes of the principal moment (about
the origin of coordinates) of the forces X n,Y,,, Z,, are

h
+_--

2

h

+_-

<= !, S(x -znx,dzd 
2

,. (1.45)
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Substituting in (1.44) and (1.45) for X n,Yn,zn from (1.42), we obtain

P'Z=_L'(N'dy--Nwdx) [

M= +

(1.46)

The principal moment is thus

M: +iM'_= i [(My +izNy--iH,,u)dx +(iM --HxymizNx)dy. (1.47)

Substituting (1.24) in (1.46) and (1.47), and integrating along the contour

L', we obtain

P'_= 4iD {_' (z) -- q_'(z)}L.,

M', +iM'u = 2D{(1 -- v) [_ (z) q- ;_$' (z)l-- (3 + v) cp(z)--

-- 2z W (z) --cp' (z)l}_,.

(1.48)

(1.49)

It is assumed that the curve /J has no common point with the hole

contour L.

We conclude that P;, definedby(1.48), and M'+ilH'y, defined by(1.49),

are, respectively, the principal vector and the principalmoment of the

forces applied to the hole contour, if integration along L' is in a clockwise
direction.

§ 5. FORM OF THE FUNCTIONS _(z), _z),

AND X(z) FOR A MULTIPLY-CONNECTED

DOMAIN

We shall express the constants A k and ak = ak+z_ k , entering in the functions

_p(z) and _(z) in (1.40), through the principal vector P,'k and the principal

moment M_s q-iM_k of the forces applied to the contour L s of a hole in the

plate.

Substituting (1.40) in (1.48) and (1.49) and taking into account the direction

of integration, we obtain

l w;. i M:s+tM;s (1.50)
As = 2n/ 8D ' as = 2_ 8D



Thus, the functions _(z). ,(z) and X(z) become

N

1 _=a [iP'zk M'xk-4- iM*_l_;(z)= _ [_. z + _b ] In (z- zO+¢ (z)

N

(z) = -- _ 8-D (M_k -- iM:"k) In (z -- z,) + _* (z)

N

X (z) = _ ia: k --z In (z -- zk) -4-_* (z)

(1.51)

where ¢p*(z). _* (z) and X*(z) are single-valued and continuous in the domain

of the plate.

It can be shown(]82],(p.127)that for a homogeneous* state of stress at

infinity in an unbounded plate, we obtain from (1.51)

1 _ 1 (M'k +iM_,)ln(z-- zk) + (Bo +iCo) z+ ¢pO(z)¢_(z)= _ -gD-

IN

1 _ _._(M:__iM.wk)ln(z__z_)+ (B' + iC')z-t-_;°(z)(z)= --

(1.52)

where B0, C0, B', C' are real constants, and qD°(z)and ,°(z) are functions which

for sufficiently large Izl can be expanded in the form

_o (z) = £ c__z ' , ,o (z) =
k_{J

In addition, we must have in this case:

(1.53)

P: = 0. (1.54)

where P: is the principal vector of the shearing forces applied to all holes

in the plate.

It is seen from (1.51) that if the load applied to the contours of the holes

is statically equivalent to zero (the principal vector and the principal

moments vanish), or if no external forces at all are applied at these holes,

the functions _(z) and _(z) will be single-valued and continuous in the entire

domain S of the plate.

The solution of the problem for a multiply-connected, in particular

doubly-connected, domain (bounded plate with hole) is exceedingly cumber-

some. In practice, the dimensions of holes which are very near to the

outer edge of the plate are often small compared to the dimensions of the

plate. In such cases the plate is considered as unbounded and having

* i.e., the moments M x, My, and Hxy are finite at infinity;

M_x_'= const, M_ _= const, H_' = ¢on_

12



a hole, it being assumed that the state of stress at the outer plate edge is not

affected by the hole.

§ 6. BASIC PROBLEMS. BOUNDARY

CONDITIONS

We shall now consider the boundary conditions for a thin plate whose

middle plane forms the domain S, which is bounded by the curved smooth
N-I-_

contour L= _ L_.

1) The plate edge L is free of geometrical constraints and is loaded by

external bending moments re(s) and shearing forces p(s), where s is the

length of the arc measured on L from an arbitrary point. We have then

the following two conditions:

M=rn(s), Q_,= N,,+--_-=p(s) (onL). (1.55)

where M,, Hn, and N are, respectively, the bending moment, the twisting

moment, and the shearing force per unit length of plate contour, in the

section whose outer normal is n. The magnitude O: is called generalized

shearing force.

The magnitudes M,, Hn_ and N, are expressed through the moments

M``. My, H``y, and the forces N x, Ny by the standard transformation formulas,
similar to the transformation formulas for the stress components when

the coordinate axes are rotated:

M = M xcos2 (n, x) + M wcos _(n, y) + 2H=v cos (n, x) cos (n, y) I

Hn, = (M -- M,) cos (n, x) cos (n, y) -{- H,y Jcos 2(n, x) -- cos _(n, y)]].

N,, = -4-IN,, cos (n, x) + Ny cos (n, Y)I )

(1.5G)

Here n is the outer normal to L; the plus sign is taken on the outer contour

of the plate, and the minus sign on the contour of the hole in the plate.

The boundary conditions (1.55) can be expressed through the deflection

function _ (x, y) by substituting (1.56) in (1.55) and expressing the moments and

forces Mx,My ..... N by (1.7) and (1.8). We obtain finally

m(s)=--D{vAw-t-(1 ,(0_ 2 . asw .-- _j j_ cos (n, x) -_ o_-s,n (n,x) +

]}-F 2 _ sin (n, x) cos (n, x)

jaa/+ a r:a,w o:_,\ . ,
= ° I a,,

a_ _ O2w . _ l_
+ s,.c., ljl

(1.57)

Following Lekhnitskii ] 63], we shall express the boundary conditions

(1.55) through the functions q_(z) and _b(z). Starting from an arbitrary point

13



on the contour L,

This yields

we integrate the second condition (1.55) along the arc s.

P+N._ = f(s) + c, (1.58)
s s

,,,= J ,v,,a_. tcs)= J.(slas, (1.59)
o o

where C is a real constant.

Substituting (1.56) in (1.55) and (1.58), we obtain

M x cos _ (n, x) + My cos z (n, y) + 2Hxy cos (n. x) cos (n, y) = m (s)l

(My -- M,,) cos (n, x) cos (n, y) + Hxy leo: (n. x) -- co: (n, y)] + l"

+P=t(s)+C ]

(i.6o)

We can find equivalent simpler conditions from (1.60). Multiplying the

first equation(1.60) by cos (n,y), the second equation by cos (n.x), and

adding the two, we obtain

M cos (n, y) + (Hx# + P) cos (n, x) = m cos (n, y) + (] + C) cos (n, x).

By virtue of(1.43), we can write (1.60) and (1.61) in the form-*

(1.61)

M,,dy -- (Hxy -- P) dx = mdy + (f + C) dx I"

(H_,, + P) dy -- Mudx = -- mdx + (f + C) dy]

(1.62)

Contour conditions of the type (1.62) can be expressed through the

functions q_(z)and _(z). We first substitute in (1.62) for M_, M w, and Hxu their

expressions from (1.24), and for Pits value

s s

s

-{- [q: (z) + q: (z)] idy} + S (N°xdY -- N°dx) =
0 "

s

= 4iO[_" (z) -- ,p' (z)1-4- I (N°dy-- NOdx)"
(1.63)

We then multiply the first equation (1.62) by--i, and add it to the second.

Integrating along the contour s, we obtain the following final boundary

condition on L for the first basic problem ]63, p. 206]:

$

0- _)iz_'(_)+, (_--3-(3+ _)_(_)I= - _-DI(too+ _t°)C,U+ _ay)+
0

-t- _ (m + it) (dx q- idy) q- iCoz -4- C. (1.64)

0

" [The first expression is obtained by multiplying the firstequation (1.60) by cos (n, x), the second equation

(1.60) by cos (n, y) and subtracting the latter from the former. ]

14



or, expressed in the conjugated magnitudes,

where

1
-- xtp (z) + zip' (z) + _ (z) = "2D 11o(s) --1 (s)] -- iCx_+ C2,(1

s

I (s) = -- _ Cm-- il:) (dx -- idy) =
o

s

P (s) = -- S (m° -- if°) (dx -- idy) =

(1.65)

(1.66)

o

.=-- rn°(s_)--iSp°(s2)ds_ (dx--idy), (1.67)
o I. o

3+v. C1 and Cz are, respectively, real and complex constants; v is
_ = 1----_'

Poisson's ratio; s, sl, sz are arcs measured along L; rn°(s_) and p0(s2) are

obtained by replacing w by uP in (1.57).

When the state of stress in the plate is given, the function _p(z) is deter-

mined except for the expression iCz + a* + i_*, and the function _ (z), except for

an expression of the form a*'+i_*' (of. (1.27)). We can utilize this

indeterminacy of the functions ¢p(z) and ap(z), and specify on one contour L_

the value of C_ in (1.65). On the remaining contours this constant will have

different values, to be determined when solving the problem. The constant

C1 is determined from the condition that the displacements be single-valued.

If the domain of the plate is simply-connected, we can set C2 = 0 in

(1.65). In addition, when the domain is bounded, we can prescribe

arbitrarily C_ and ¢p(0) or 4(0) (it is assumed that the origin of coordinates

lies inside the domain S). We thus set

¢p(0) = 0Cx or=0 _b (0) = 0 }, (1.68)

For an unbounded domain with finite stresses at infinity, we can write
instead

Imtp'(co) = 0,

cp(oo)=0 or ap(_)=0. (1.69)

2) The deflections w (s)and the slopes of the middle surface with respect

to the xy-plane are specified along the contour L of a plate forming a
Ow

simply-connected domain, i.e., the normal derivative dh- is given as a

function of the arc length s (n is the outer normal). In particular, if w(s)
dw

and _- vanish on L, the plate edge is built in at a fixed support. In this

case the boundary conditions are

dw Ow,
w=w,(s). _- = -_- on/., (1.70)

15



wherew, (s) and _ are known functions on L.

We can write (1.70) in a more convenient form.

L, its derivative
If w(s) is known on

aw 8w ax A Ow ay
a---_= a-x" _ a.y as (1.71)

is also known. In addition

0w 0w Ox 0w 0y
an = '_-" _-_ + '_-y"_-' (1.72)

where (Figure 5)

ay Ox Ox ay
aS =--_-=cos(n,x)=cosa; --_-=-_-_=cos(n,y)=sina, (1.73)

a is the angle between the outer normal n and the x-axis.

Thus,

0 LX 0 '_x

FIGURE 5.

Ow + i Ow [ Ow . aw \ / Ox ay )a,, - :
l_ f Sw . aw

= e _-_ -- , -_y ).

Hence, according to(1.70),

Ow __=/ o_, Ow, )ax i-_-y=e _--_-+i-_- on z_

Inserting (1.23) into the left-hand side of(1.75), we obtain

1 0w

- --_-j = cp(z)+ _'(z) + ,(z) + -_ _-_-- -- t--_-).

Hence, the boundary condition of the second basic problem is:

(z)+ z,V(z)+, (z)= T \ an + __) -- _

(1.74)

(1.75)

(1.76)

(1.77)
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Chapter H

BENDING OF TIIIN PLATES REINFORCED

BY CURVED STIFFENING RIBS

1. STATEMENT OF THE PROBLEM

Although structures consisting of thin plates reinforced by annular

stiffening ribs have been used for a long time in engineering practice, the

problem of analyzing such plates has not been solved completely so far.

To study the influence of stiffening ribs on the strength and rigidity of thin

plates, we consider /148, 152/ a thin elastic isotropie plate whose middle

surface forms a bounded multiply-connected domain S in the plane z=x+iy.

The boundary L of S consists of a set of simple closed curves L/(/= l,

2..... m+l), with the curve Lm+, enclosing all others (Figure 6). The plate

is reinforced by annular stiffening ribs made of a different material. The

axial lines of the ribs are denoted by Y2..... ?,. The line F=_ _/k divides

the domain S into t-F 1 domains so that S=So-+S_+...-t-S l. We assume for

simpIieity that the domains Sk(k= 1, 2..... l) are simply connected, while

the domain So is multiply-connected and bounded by the set of curves F and
m+l

L= _L t .

-.ll
1"1

FIGURE 6.

We assume further that the boundaries L and I' neither touch nor

intersect each other. A given transverse load (distributed load q_(x,y),

concentrated moments and forces) is applied to the plate in domains

18



Unliketheright-handsideof (1.65)theright-handsideof (1.77)contains
noarbitrary magnitudes.Sincethedisplacementsof all pointsof theplate
are completelydeterminedin thecaseconsidered,it followsfrom (1.31)
thatof thefive constantsenteringin (1.27)wecanonlyprescribeGand
oneof thepairs (a*,_*)or (a*',_*'). If theoriginof coordinateslies in the
domainof theplate, wecanseteither

Im[¢'(0)l= 0. ¢(0)= 0. (1.78)

or

Im[¢p'(0)]= 0, _(0)=0. (1.79)

For anunboundeddomainwith finite stressesat infinity, wecanset
either

lm[_' (oo)1 = 0, _ (o0) = 0 (1.8o) _

or

Im [q)'(0o)] = O, _p(0o) = O. (1.81)

In fact, (1.77) is equivalent to

• 0w 0w, .0w,
O_-+t-_-=-3_+l-- _ on L,

(1.s2)

and not to (1.70).

If the plate forms a simply-connected domain, rigid-body displacement

of its edge L is unimportant. We can then replace (1.70) by(1.77), since

under varying conditions the plate deflections will not differ, the entire

plate only being displaced as a rigid body.

If the plate forms a multiply-connected domain, (1.70) cannot be replaced

by (1.77) in general.

3) The plate edge is simply supported. The deflection and the bending

moment at L vanish, i.e.,

w=O, M.=O on L, (1.83)

where Mn is defined by (1.56).

The boundary conditions (1.83) are homogeneous; generally speaking,

however, nonhomogeneous boundary conditions are also possible. Thus,

if external bending moments re(s} are applied to the hinged support of a

plate, we have instead of (1.83):

w=O, M,,=m(s) on L. (1.84)

We shall in the next chapter derive the boundary conditions for a more

general case, when the plate edge is connected to a thin elastic bar which

is deformed together with the plate (cf. § 16 of Chapter II).
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Sk(k=0, 1, 2..... l), while external bending moments re(s) and forces p(s) act

on the boundary L (conditions of the first basic problem):

0tt ,,, (s)
m (s) = M,, (s), p (s) = Nn (s) + _ on L. (2.1)

Alternatively, the conditions of the second basic problem are:

0w 0w,
w = w, (s). _- = Tn- on L. (2.2)

The stiffening ribs are considered as thin elastic rings possessing

constant flexural and torsional rigidities. The behavior of such ribs is

known from the theory of small deformations of thin curved bars /66, 87,

102/.

l-I

"h, Po. ,.oI"Y m_, m. m_ m_po_ I p(s) . pls) .

p{s) /n°/¢ pox /._x _'/_/¢ Pxx Pox oK m

FIGURE ?,

We assume further that one of the principal axes of inertia of the cross

section of each stiffening rib lies in thexy-plane. This principal axis of

inertia coincides with the principal normal to the axial line _'k (k = l. 2..... l)

of the ring considered.

Since the width of the stiffening ribs is small, we assume that the

domains S O and S k touch along the curves 7k.

The bending moments and forces, acting on thek-th rib from the side

of the domain S O, will be denoted by rook (s) and Pok(s}, and those acting on

this rib from the side of the domain S,, by tnk_ (s) and Ps_ (s) (k = l, 2 ..... l),

where s is the arc of the contour _/k, measured clockwise from an

arbitrary point. If a load acts directly on the stiffening rib, i.e., along _s,

it can, by virtue of the above assumptions, be considered as applied to

one of the adjacent domains S o or S k. The positive directions of forces and

moments are shown in Figure 7, which represents a section of the plate

along the line I--I (ef. Figure 6).

The k-th rib is thus subjected to the total load

,n s (s) = rnos (s) -- rnss (s) I.

fPk (S) = Pos (S) -- Pss (S)
(2.3)

In other words, the bending moments and the shearing forces undergo (so

far unknown) jumps ms(s) and ps(s) during transition from So to S s.

Under the action of the load (2.3) the rib is deformed together with the

plate near it. The continuity condition for the deflections and slopes on

the contour 7s yields

w o= w s = As, (2.4)
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8wo Owj, (2.5)On = _ = 0,,,

where w0 is the plate deflection in S0, w_ is the deflection in Sk(k=

=l, 2.... ,l). Ak is the deflection of the points on the axis of the k-th rib,

n is the outer normal relative to S0, 0k is the angle of torsion of the elastic

line of the rib, i.e., the angle of rotation of the normal rib section about

the tangent x to the contour 7k" The tangent lies in the direction of

increasing values of s (Figure 6).

Differentiating (2.4) with respect to s, we can write the condition of

strain continuity in complex form".'

0w 0 0_ 0 0w4 0wk ]
On "t-i_="_-n +iT on'_,

Ow4 i OWk ]On + Os = O,k--iO,_ on Y4

(2.6)

dA 4
where 0ak----_ is the angle of bending of the rib, i.e., the angle of

rotation of the tangent to the rib axis about the normal in the xy-plane at the

given point of the axis. The angles 04 and 04 are considered as positive
when the rotation is anticlockwise.

The boundary conditions (2.6) can be transformed, similarly to(1.74),

by writing

On + t-_-= ii --,-_ ,

where t=x+iy is the complex coordinate of the point considered of

{) -F ---- . Since t t=l, we can rewrite (2.6) in the form

0w4 0w4

Ox --i--0-y- = "i-(0,4-i0,'*) on ¥4, (2.7)

0% . o_o o_ . 8%
Ox t-_--y =_--l--_-- on Yk" (2.8)

Thus, (2.3), (2.7), and (2.8) must be satisfied on ¥4. The right-hand

side of (2.7) contains the unknown strains of rib ¥4, due to load (2.3). In

addition, the deflections w0(x.y ) must also satisfy the boundary conditions

(2.1) or (2.2) on the external boundary L of So. Different boundary

conditions can also be 3pecified on L.

§ 2. TRANSFORMING THE BOUNDARY

CONDITION (2.7)

We transform the boundary condition (2.7) by considering the equilibrium and

deformation of the thin elastic ring y4(k = l. 2.... ,l), acted upon by the loads

p4(s) and rn4(s) ((2.3)).

* ]he replacement of boundary conditions (2.4) and (2.5) by (2.6) is permissible in this case (cf. § 6 of
Chapter I).

2O



Wedenoteby

thevectorof rotationof thetrihedron, formedbythebasisvectors_,_,_,
duringdeformationof thering. Thebinormalunitvector"_is directed
downwardparallel to theZ-axis. We also introduce the vector

=8=,k;+ 8°5

where 6¢0_. &%_, and &o,k are the increments of the principal components of
the curvature and torsion of the ring.

The vectors "_k(S) and _(s) are connected by the Clebsch relationships/66/:

dock

dO_
6o)_ = _ + O)bkO,k-- co,,Ob_

dOb,

(2.9)

where ¢o,_, c0_, and ¢o k are the principal components of the curvature and
torsion of the ring.

The components of the principal moment

of the internal forces acting in section s of the ring, are related to the

components of sk(s) by the Kirchhoff equations

L_k L,_ L_
_,_ = --CT' 8=ok= _, 6%.= _-;/, (2., 0)

where L,_and Lbk are the bending moments [in fact, the dimensions of L

are force × length_ ]; L,k is the twisting moment; A_ and Bk are the

flexural rigidities of the ring about the _ and _ axes, respectively; Ck is

the torsional ridigity.

The equilibrium equations of a ring element are

(2.**)

where _, is the principal vector of the internal forces acting in section s

of the ring, _k and _nk are, respectively, the external force and bending

moment applied to unit length of the axis of the ring element considered.

In the case considered we obtain from (2.3);
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In addition,

l

O)Tk=0, O)_=0; Obk=_--k, (2.13)

since each stiffening rib has a constant cross section, and its axis ¥4 is a

plane curve with variable radius of curvature Qk" The first two equations

(2.9) become, when (2.13) is inserted:

= 6o,k + O._.--

dO,,_
(2.14)

This becomes in complex form:

d (O_--iOk)=S¢ok-i6%k+ i__(O,k__iOk).
ds Qk

Multiplying both sides of (2.15) by tds and integrating, we obtain

• _-ds
=

= (6%k--i_%k)?ds+i _(Lk--i%);-ds.
0

(2.15)

Integrating the left-hand side by parts, taking into account that

_ d (;_;_) = }.__._ ,) . _ d (2.16)
ds ds 04 Ok Qk "

we find

where Cak

we obtain

(O_k-- iO.k)_ = _ (_mTk--iSo_nk)t_s + C3k, (2.1 7)

0

=(00k--i0_k) t-0 is a complex constant. Substituting (2.10) in (2.17),

o

(2.18)

We express the integral in the right-hand side of (2.18) through the load

(2.12) on the rib by projecting the second equation (2.11) on the moving

axes ¢ and _. Since

_-= o_-' -&-: Qk as =o,
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we obtain

dL'k ----L"km k(s) 1

dL,_ L'_k I'-_-. = _ Q--[+ Vbk

(2.19)

where V_k is the shearing force acting in section s of the rib.

Multiplying by [ds both sides of the first equation (2.19) and integrating

yields

d L.k.-- : ..
¢ dL_k _fs = |- tds- _rn_(s)tds.

.oJ

Integrating the left-hand side by parts, using (2.16) and noting that t_=l,

we obtain

L,k = --/t L,k ds + t -- rnk (s) _ds + Ck t,

0

(2.20)

where C_ is a complex constant. Proceeding in the same way with the

second equation(2.19), we obtain

s s

(2.21)

where C_ is also a complex constant. Multiplying (2.21) by i and subtracting

it from (2.20) yields then

s

L,k-- iL,_= -- iS trek(s)+ iV_ltds+ C_i, (2.22)
o

where C4k = (/-_k--iL_k)70 is a new complex constant. Integrating the first
equation (2.11) and using (2.12), we obtain

s

vb_= - I p,,(s)ds+ V°_,

where V_k is a real constant. Inserting (2.23) in(2.22) yields

(2.23)

!t.,-it_----t"S[.,.(s,)--_ p_(s_)_.=]_,--_}_.(_--}o)+ C_ (2.24)
0

where tr, is the coordinate of s = O.

We write, by analogy with (1.66),

, ].
:_(,)= "tu, (_)- _, O--t)+ c ,j
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Theunknownfunctions
theloads(2.3)acrossy_.

Using(2.25),wewrite (2.24)in theform

Hence

lk(t) (k=l. 2,....1) depend obviously on the jump in

L ,k -- iL_ = 1"k(s).

Ln* = 1 [11 (s) -- I, (s)][

Substituting (2.26) in (2.18), we obtain

s

o

, l ,
where

The boundary condition (2.7) can thus finally be written in the form

$

Ox i _- = -- Jk (s) ds--iC_.
0

(2.26)

(2.27)

(2.28)

(2.29)

The flexural and torsional rib rigidities Ak and C, entering in (2.28) depend

on the shape, dimensions, and material of the rib. The flexural rigidity

A_ is

A_ = F.kl,_. (2.30)

where E_ is the modulus of elasticity of the rib material, /,_ is the moment

of inertia of the rib cross section relative to its principal axis lying in the xy-

plane and coinciding with the normal n to y_.
The torsional rigidity is

c, = 2_ SS ¢ (x,y)a_ = _,,,,. (2.3 z)
Qk

where _ is the modulus of shear of the rib material, f}k is the cross-

sectional area of the rib, ¢(x,g) is Prandtl's stress function (cf. Novozhilov

]89], p. 249), determined when solving Saint-Venant's problem of the torsion

of a prismatic bar.

The ratio between the torsional and flexural rigidities of the rib is

¢k _kl ,k !,_
A'--_= _ = 2(1 + v,)l,, k ' (2.32)
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where% is Poisson'sratio for therib material.

§3. ADDITIONALNOTES.DERIVATION
OF SOMEFORMULAS

Theintegrationconstants C_ in (2.22) and V° in (2.23) will be determined

from the condition that the strains and deflections of the ring be single-

valued. Since the magnitudes 0s and 0,_ must regain their initial values

after a complete pass along contou t- "tk, we find from (2.18) that

kW-' = (2.33)
Yk

Since by (2.26) and (2.28),

YS Yk

we obtain

S Js(s)ds =0. (2.35)

This follows also from (2.29) as a consequence of the single-valuedness of
the plate strains.

The deflection of the k-th rib is

s

As (s) = -- S e.,ds + C_,

where Ca_ =A_(0) is a real constant.
Substitution for 0,_ in (2.36) from (2.27) yields

(2.36)

As (s) = -- Re Jk (s)ds + 2C_] ds + C_,. (2.37)

The condition that the deflections of tl-e rib be single-valued is therefore

$

lmS[S',(')'l" =0 (2.38)
"_k 0

Integrating the last equation by parts, and taking (2.35) into account, we
obtain

lm 5 tJs(s)ds = O. (2.39)
'Yk
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The constants C_a and V ° are determined from (2.35) and (2.39) whosebk

soltltion yields

1 Im_ u'_(s)lk(s)ds ]

C4a=--iV°)-oa--F!ua2 (s)I k (s)ds+ _Va2 (s) l k (s)ds I'

(2.40)

where

(l 1),,;(_)= _ + _ f(aa,,'a+ L_'a)- t (,,_- t,_)] +

l I )[_(a__b_k)__(aka_+baa,)]i _+ ( Ca Aa

1

ua2 (s) -- a_ -- bkb a { (back -- aaca) u',(s)--W-+
1 1

1 { u'_(s)Vk2 (S) = _ (akc k -- bk-dk)
a_ -- bkb _ oa

i 1 b 1

v_= a',(b,-c_-- a,c,) + a',(back-- a/-,) + c'_(a', -- b_-6k)

(2.41)

c;=

1 i)fbd sa.=za(_+-J:), b_=(c ' ,_
'v k

Yk

l 1 -0 l l
a'. = (--_k + --_-_k) Z.l, -- (. _, _ .) _ ' t'ds

¥k

2 1

(2.41a)

Ia is the length of the rib Yk, z ° is the coordinate of its center of gravity.

The function l,(s) is expressed through rna(s) and pk(s) by (2.25).

The internal forces and moments (bending and twisting moments and

shearing force) in the rib ¥, are determined by means of (2.25) from the

function I'k(s), through which the moments L,k, L,,, and the shearing force

Vb, acting on the rib are expressed, respectively, by (2.26) and(2.19):

L_, -----Re f,(s). L,o, -_ -- Iml_(s).

Vbk = _ Re 1_ (s) -- lrn/_' (s).

The internal forces and moments in the rib can also be expressed by

other formulas, which are sometimes more convenient.
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We derive these formulas by comparing (2.18) with (2.7):

[ L,k _ L.k _ 0% Ow_
0

(2.42)

Differentiation of this equation yields

L_k L,_ \ _ [Ow_\ [ 0 low k\ O low k\ _]
-c=-,-z. + ]

Hence,

L,k . L,k dt O_ F--_- (2.43)A, + t--c_-k =--2 dt OP

Since dt =} _ and also Os 1 ( d_ 0--_) 1d---t- ' OtOt 4 -_-'_'+ =TA, we obtain from

(2.43) a new formula, which expresses the moments in the rib through
the deflections w_:

L,_ L,, 1 ( . d_ k \As q-i--CS--_ =--_ Aw*+4tz--_-) • (2.44)

In view of (2.4) and (2.5), we can replace wkbyw 0in (2.42) and (2.44).

It is easily seen from the derivation of (2.44) that this equation follows

from (2.7), which states that the strains in the plate and in the stiffening

rib are equal. It can also be proved that if (2.44) is satisfied, then (2.7)
will also be satisfied.

Hence, (2.44) is equivalent to the condition that the strains in the plate
and in the stiffening rib be equal.

Equation (2.44) can also be represented in a different form. The

following relationships follow from (1.7):

l 1 (M + Mn)
Aw= D(1 + v) (Mx +Mu) : D(I --F 'v)

• O_w e-_'a [ 02to 0_t_ d_v]t'_v=_ Oy" Ox_ -t- 2i _- = (2.45)

e...._a

4D (1 -- v) [M, -- My -- 2/Hv ]=

1

4D (1 _ v) [M, _ M, + 2iH,,]

D = Eha
where _ is the plate rigidity, a is the angle between the normal

n to the contour "/k and the x-axis, measured counterclockwise from this

axis; M,. Mu, Mn, M, are bending moments, and H_, Hr_ twisting moments
in So (or Sk) at points of the contour Yk"

27



Substituting(2.45)in (2.44),andtakingintoaccountthat Hr, =--//,r, we

ob tain

L,_, Lrk 1
A---_+ t _ = _[M r -- vM, + i(1 + v) Hnr]. (2.46)

Separating the real and imaginary parts in (2.46), we find two more

formulas expressing the moments in the rib through the moments in the

plate adjacent to it:

Ak (M_ -- vM n) ]
Ln*= D (I-- v_)

C_
Lrk D (1 -- v)Hnr

The shearing force in any section of the rib is by (2.19):

(2.47)

1 [ _-s C'(l+v) H,r ] (2.48)v_ = _ ak (Mr--_M9 + Q_ •

The quantities L._ and Lrk (2.47) have definite physical meanings, and

their magnitudes are therefore independent of the selection of the domain

So or S_ in which the moments M., M r, and H., are considered. It follows
then from (2.47) that the right-hand side of (2.46) is also independent of

the domain in which the moments acting on 1" are considered, and is thus

invariant with respect to transition from domain S k into domain S o across Yk •

Hence,

{1--_-_[M, -- "_Mn -_- i (I -k- v) H n,]}-=

= -_-h_[M --vM_+ i(I+v)HJ 3

where the plus and minus signs correspond to the boundary values when

z--+t, respectively, from the left and right of Yk, i.e., in So or Sh.

The derivation of (2.49) shows that this formula is valid also when the

domains So and S k are respectively formed by plates of different rigidities

Do and D_.
For a plate of constant thickness it follows from (2.49) that

Hnr+----Hnr,- (M, -- vMn)+ = (M, -- vMn)-.

The last equality can also be written in the form

M_+ --M,-

This means that the ratio of the jumps in the moments M, and M, during

transition across Yk is equal to Poisson's ratio for the plate. This formula

can be used to check the accuracy of approximate solutions.
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Equation(2.49)is independentof therigidity of therib, andtherefore
remainsvalid evenwhennorib exists(absolutelyflexiblerib), i. e., for
steppedplates. This formulawasderivedindependentlyfor thelatter case
bySheremet'ev/182/ using a different procedure.

In the particular case of a circular stiffening rib, of radius R, reinforc-

ing a circular or annular plate loaded axisymmetrically, we have

_ +_ --L,h -- H,, -- H,, = 0

JL,_ = R(M[ -- ,_:)
(2.50)

It follows therefore from (2.49) that for (EhS)+ =(Ehs) -

Using (2.50), we find from (2.46) for M_ =0 in the axisymmetrical case,

i. e., when an unloaded ring reinforces the edge of a circular hole in the

plate,

M.)+ 6, (2.51)= 1--v=+61v"

A
Here, 61 =--ff_- is the relative flexural rigidity of the ring• It follows

from(2 1/ that( inereasesmonotonioallyfromzeroto--'.hen 6,
\ V

increases from zero to infinity, and that M + = M+ for 6x = 1 -_v.

If M+= 0, i. e. , the rib (free of external forces and moments) reinforces

the edge of a circular plate, we obtain from (2.46)

M,)- v=-b 6,v--l (2.52)-_a _ 61 "*

Hence, (M_/M)- increases monotonically from --oo to v when 81 increases

from zero to infinity; when 61 = l--v, M;" =M_', and when 61-- l--v 2 ,
v

M;-=0. When 6_----0 (no rib), M_=O, as ought to be expected.

Equations (2.51) and (2.52) are valid for any axisymmett'ical load.

§ 4. CONDITIONS OF EQUILIBRIUM

OF THE STIFFENING RIB

The rib Yk is loaded by the moments rnk(s ) and forces pk(s) given by (2.3).

Since the rib is in equilibrium, the corresponding principal vector and
principal moment must vanish:

Sp,(s) ds = 0. (2.53)
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Integratingbyparts

S m4 (s)&s -- i S tpk (s) ds = O. (2.54)
Yk Yk

the second term in (2.54) and using (2.53), we obtain

st

Y4 Y4

Substituting (2.55) in (2.54) and introducing the conjugated magnitudes, we

obtain

st

S[ S =0 (2.56)
¥k 0

Comparison with (2.25) yields

S dlk (s) = 0

or

l,(lk) = 14(0) = O. (2.57)

Thus, the requirement that the function I4(t ) be single-valued follows from

the equilibrium condition for the rib.

§ 5. THEOREM ON THE POTENTIAL

ENERGY AND UNIQUENESS THEOREM

In order to derive the variational equations of Lagrange and Castigliano,

which may be useful in approximately solving, by variational methods,

problems of bending of plates with stiffening ribs, we have to prove the

potential-energy theorem. Consider the integral, extending over the
m+l

boundary L = _Lj of domain S of a plate (Figure 6) carrying a tranverse

load q(x, y):

U = _[w(N,, + OH..\T)--d-ffOWM"] ds (2.58)
L

(n is the external normal to domain S0).

Here M,,, Hn,, and N n are, respectively, the bending and twisting

moments and shearing forces, defined by (1.56).

We find from (2.3):

l

O=__=_{w[pk(s)+p_(s)--pok(s)l+_--_lm,(s)+m.(s)--mo_(s)l}ds, (2.59)
'Vk
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where

0HI,, }

m_ = M_, Pkk = N-_ + _ on ykinSk

N . OH,., ( OHn,\rook= M,. Pok= ,h+ _ = -- N, 4- --_-)on y_inSo

(2.60)

Here rnk and Pk are moments and forces acting on the stiffening rib _,; n,

is the external normal to domain S_; ds,=--ds. Adding (2.59) to (2.58),
we obtain

U _

Ow _ " - OHm.,\ o_ M-

!

4-£_[wPk (S)+ _rn_(s) ]ds.
(2.61)

We introduce the symbols

OH._ Ow

La

1

$

where t0=t+_¥4 is the boundary of domain S o.

We can then write (2.61) as follows:

U=U,+U2+Us. (2.65)

Let us evaluate U,, integrating by parts:

_ OH" wds -_Hn,w -- _ H,,o_sdS. (2.66)Os

The first term on the right-hand side of (2.66) represents the increment of

the product wH,,. during a complete pass around Lo, and vanishes since H.,
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and w are single-valued. Hence

l aHn, . =
-_- was -- H_,_s ds.

(2.67)

We can therefore write (2.62) as follows:

0w ds (2,68)

Substituting (1.56) in (2.68), we obtain

U1 = _ {[Nxcos(n,x) + Nwcos (n, y)lw--[M.cos(n,x) +

r+ H_u cos (n,y)lI cos(n,x)+
$

+ H_u cos (n, x)I cos (n, y) -- _- cos (n, x) ds

Separating real and imaginary parts in (1.74) [after multiplying by e-m],

we obtain

0w

O_-_c°s(n'x)+O-ic°s(n'')='O'_ I (2.70)

0w /kv 0w "
cos (n, y) -- _- cos (n, x) = _- }

Hence, (2.69) becomes

H _ -- N_) cos (n, y)] ds. (2.71)+ =u_-_

With the aid of Green's formula we can transform the line integral (2.71)

into an area integral over So:

u,=- + +

_ H
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The equilibrium equations for a thin plate element are (cf. for instance

/61/, _ 130):

aM,= OH=v ..
ax t'-6_---N*=O

aM, OHxv .
a--_-+ _ -- o% : 0

aN. aN,
a-T+ _ = --q(x,y)

The bending and twisting moments are, respectively, (cf. (1.7))

/'/'v = --D(I --_)OxOy

Hence, (2.72) becomes

where

Ul : -- _s! q(x, y)wdxdy + 2 _s! Wdxdy ,

(2.73)

(2.75)

2W:D o'mw.4_ 0_ ' (1_v,)(____2)'+2(1 - O_ '

The function W represents the unit potential energy of bending strain of a

thin plate, obtained when the shearing forces are ignored. Generally W

is larger than zero, vanishing only when

a_.w o_ o_v

ax-T :0--_- :0-_ :0, (2.76)

i.e., when the deflection w is a linear function of the coordinates. In other

words, W = 0 only if w represents the rigid-body displacement of the plate.

It follows then from (2.76) that the strain components (1.3) vanish, i. e.,

ex = % = "Yxv = 0. (2.77)

Evaluating U, in the same way, we obtain

l

Addition of this to (2.75) yields

U,-i-Ui =-- Ss_q(x . g)wdxdy-b 2 JsJWdxdy. (2.78)
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We shall now evaluate Ua. It follows from (2.11) and (2.197 that

(2.79)
Pk(s)=--'--_- =-- _ k Ok ds ]'

L,..h_ dL_ (2.80)
ink(s) = Ok --_"

Substitution of (2.79) and (2.807 in (2.647 yields

Integrating the subtrahend by parts, and remembering that w\

is single-valued, we obtain

l

Using(2.6), we can rewrite (2.81) in the form

l

U$ _ _ {_Yk (_kkO'_k--Ltk o ' "Ql¢nk ) as -- f (O,_kdL,_kvk -}- OnkdLnl')}" (2.82)

Integrating the subtrahend by parts, noting that 0,_, 0. k, /._k, and L_k are

single-valued, we obtain

3?he relationships of Clebsch (2.14) and Kirehhoff (2.107 enable us to

write Ua finally in the form

t 2 2

'_ _ fL_, -F L: _ ds (2.847
u,= z_ j i c, A_] •

k=l Yk

The integrand in (2.84) represents the doubled potential strain energy

per unit length of a thin bar when the shearing forces are ignored.

Obviously, Us _ O, vanishing only when _k = L,_=O.

Substituting (2.78) and (2.84) in (2.657, we find

t

u = - q(x, y),_dxdu + 2 Wd_@ + J _, C, T_ d_.
(2.85)
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This expressesmathematicallythetheoremonthepotentialstrain
energyof a bodyin equilibriumundertheactionofagivenload. Using
(2.58),(2.85)canberewrittenasfollows:

where
l

+'_ 0_) +
k_l Yk S

, f V1 (2.87)

is the potential strain energy of a plate with stiffening ribs.

Thus, in the case of a thin plate, reinforced by stiffening ribs whose

behavior is described by the theory of small deformations of thin curved

bars, the theorem on the potential energy can be expressed mathematically

as follows by (2.86):

Neglecting the transverse forces and taking into

account only the energy of the bending and twisting

moments, the potential strain energy of a plate with

stiffening ribs, which is in equilibrium under the action

of a given load, is equal to half the work done by the

external forces when passing from the unstressed state

to the state of equilibrium.

We shall now prove the uniqueness theorem. Assume first that two

solutions are possible for the problem of the equilibrium of a plate with

stiffening ribs under given conditions on the boundary L. Let w', L,,k,

L_k be the plate deflections and the internal moments of the rib

yk (k = l, 2 ..... l) corresponding to the first solution, and w", L'_, L;k the

corresponding magnitudes for the second solution. The differences between

these quantities are:

W _ W* -- W',

Ln_ = L_ --L',_, L_k= L'_k-- L',k.

The function w satisfies obviously the Sophie Germain equation for q(x,y)=0,

i. e., when no transverse load acts on the plate.

Setting q(x,y)=O in (2.85) and (2.58), we thus obtain for the difference

between the two solutions w, L,k, and L,k

!

ds. (2.88)

We shall consider now the following basic problems.

1) First basic problem. The externalbending moments and

shearing forces per unit contour length are specified on L.
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2) Second basic problem. Thedeflectionsof theplateedgeand
the slopeof thebentmiddlesurface(the derivativeof the deflection
with respectto thenormal)arespecifiedonL.

3) Third basic problem. The edge deflections and the external

bending moments per unit contour length are specified on L.

4) Mixed problem. The conditions of the first basic problem are

specified on one part of L (L'), those of the second basic problem on

another part of L (L'), and those of the third basic problem on the

remaining part of L( L _).

Since both our solutions satisfy the boundary conditions on L, their

differences must satisfy zero conditions on the boundary, i.e.,

for the first basic problem

OHn.t

M.=N.+-_- =Oon L;

for the second basic problem

m=_n=OOn i;

for the third basic problem

w = M. = O onL;

for the mixed problem

w=_=O on

w=M.=Oon

(2.89)

Thus, in all these four cases the right-hand side of (2.88) vanishes, and

therefore

I

S k_l Yk

The last condition is, however, fulfilled only when

W = 0 everywhere in S. (2.90)

/_,_= t,,=0 everywhere on y_(k = !.2 ..... /). (2.91)

We see from (2.77) that condition (2.90) is equivalent to the vanishing of

the strain components of the plate for the difference of the two solutions;
hence the corresponding moments and shearing forces acting on the plate

must also be zero. Condition (2.91) means, according to(2.19), that on

the rib _k the internal moments and the shearing forces V_, corresponding
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to thedifferencesof thetwosolutions,vanish. Hence,thestrains 8¢o.k
and 6(o, k in (2.10) must also be zero. Thus, the two solutions are identical

since they give identical moments, shearing forces, and strains in the

plate and in the rib _/k(k = l. 2 ..... /). The uniqueness theorem is thus

proved. The proof given here is similar to the proof of Kirchhoff's

Uniqueness Theorem for the basic problem of the theory of elasticity.

The identity of the stresses (strains) of the two solutions of our problem

does not exclude differences in the deflections. Condition (2.90) means

that the differences in the deflections, corresponding to the two solutions,

represents only the rigid-body displacement of the plate and is, according

to (2.76),a linear function of the coordinates, i.e.,

w=ax + by+v.

By (2.18), condition (2.91) is equivalent to

(2.92)

Hence

8,k -- i8.k = C,_.

%, = Re(iC,ki).

It follows that the deflection h k of rib,/k, corresponding to the difference
of the two solutions, is

A k= -- _ e._s + c'= -- Re .[iC,_dt4-c'=l [i_,,-- C,_)z+ (C,,,+ _',k)Y]+c'.(2.9 3)

This means that for rib ¥, the difference between the two solutions

represents a rigid-body displacement. According to (2.4), w[_, = Ak,
and therefore

1 - l (C,k+_,t)=b. ¢,=c"_ i (C,,--C,_)=a, --_ (2.94)

Rigid-body displacement of the entire structure (plate with stiffening

ribs) has obviously no effect on the stresses and strains in the plate and

ribs, and will henceforth be ignored.

For the second, third, and mixed basic problems even this difference

disappears since the deflections are specified on the entire boundary L

or on part of it.

The following conclusion follows from the uniqueness theorem.

If the transverse load qtx, y) vanishes and inaddition: either a)the external

bending moments and shearing forces are zero; or b) the deflections and

their normal derivatives at all points of the plate edge are zero; or c) the

deflections at the edge and the external bending moments are zero; or d)

conditions similar to (2.89) are fulfilled, then the bending moments,

shearing forces, and strains will vanish in the entire plate and in the rib Yk.

The uniqueness theorem is proved similarly when the stiffening ribs are

located at the plate edge.
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§ 6. LAGRANGE'S VARIATIONAL EQUATION

FOR A PLATE WITH STIFFENING RIBS

The potential energy of bending of a plate with stiffening ribs is given

by (2.87). If we assume, for simplicity, that the plate is subjected only

to a transverse load q(x, y), then Lagrange's variational equation becomes

_6V+_Sq6wdxdy = O.
(2.95)

where 8w is a virtual deflection of the plate, i. e. , a deflection compatible

with the geometrical constraints imposed on the plate; 6V is the variation of

the function V defined by (2.87).

The deflection w is subjected to the geometrical conditions

w = 0 on L, (2.96)

if the plate is simply supported along its edge;

dw_ 0
On- on L, (2.97)

w = 0 on L, (2.98)

if the plate is built-in along its edge;

o_ + 0w-

w+=w -, _ =-_ on¥ k, (2.99)

0_

w=A k, _ =0,_ on ?k, (2.100)

where the plus and minus signs indicate that the corresponding magnitude

belongs to domain S o and S k, respectively.

Conditions (2.96) to (2.100) impose certain restrictions on the variation

bw, namely:

if the plate is hinged along L,

6w=O onL; (2.101)

if the plate is built-in along L,

In addition,

6 dw
6w=O and (ffff)=

0 on L. (2.102)

6w-=bw +, _On(6w-)=_(6w+) on¥ k

(k = i,2 ..... O.

(2.103)
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UsingKirchhoff's formula(]62/, p. 283), and taking (2.103) and (2.3)

into account, we obtain from (2.87)

/, L

l

+ _-) 8wds-- rnk(s)N(Sw)ds
p k=l

(2.104)

where

[1 _ (/._,_ L_/ds}"_vj = t, i_-j \ff_-k+ .4_]
Yk

To determine 8Yk we first transform the expression for V k. With the aid

of the formulas of Kirchhoff (2.10) and Clebsch (2.14) we obtain

C d 0w

Yk ¥k

(2.105)

Thus

d :Ow 10w d 0 1 0

Yk

A [10w, d Ow 1 0 d 0

This becomes by virtue of (2.14) and (2.10):

d o , o [±.g(_,_)-g..°--(_,_)ltd_.(2.1oG)

Integrating by parts, we obtain for a closed contour (since the functions

are single-valued)

¥k Yk

j ,o,4,oo,:- f_,oo).-__,s=food,,,,-..,,,,_,
Yk _'k Yk

t_ k os

_'k Yk

(2.107)
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Substituting(2.107)in (2.106),weobtain

I(Lnk dL,_\ O d

Yk

(2.108)

Substitution of (2.108) in (2.104), and of th_ result in (2.95), yields

where

S L L

(2.109)

$

Vb, = -- _.p_ (s) ds 4- V° k. ( 2.11 O)
0

Integrating by parts the last integral in (2.109), we obtain the following

variational equation for the bending of a thin plate reinforced by stiffening

ribs:

S L L

-t-_---v,,}-_-as=u. (2.111)+ J\ _k
F F

Since the variations 6w inside the plate are arbitrary, we obtain from

(2.111)"

1) the Sophie Germain equation for transverse bending of a thin plate

Daaw =q, (2.112)

2) the equilibrium equation (2.19) for an element of the stiffening rib

belonging to F

dLxk L._
+ mk (s) = 0

ds {_k

dL,_ I._ _ Vbk = 0-_ + o_-

(2.113)

3) the boundary condition on L

_]_ O(6w) (N,, OH.,_..,, ----ff_ ds + S + -_--Z j 6wds = O. (2.114)
L L

If the edge L is built-in the variation 6w on it must satisfy (2.102); hence,

the boundary condition (2.114) must be satisfied by proper selection of the
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functionw(x, y), and (2.111) reduces to the following variational equation:

_s _(Ln_dl-.xk xa(6w)..' (DAAw -- q) 6wdxdy -q,- -_k ds
r m_) --tiff- as +

r

(2.115)

If the edge L is hinged, the variation 8w must satisfy (2.101); the

following condition then follows from (2.114):

Mn = 0 on L. (2.116)

If the plate edge L is free, the variation _w is arbitrary, and we obtain

from (2.114) the boundary conditions

. OH._
M_=O. /v. q-_--=0. (2.117)

When solving approximately the problem by proceeding from Lagrange's

variational equation(2.95), it is convenient to express V by substituting
for Vk from (2.105):

V=S_D[(Aw,, 2(l__v,{O_ 0__ '_-O-y][O_':]J]dxdy+
S

!

! d 'Ore 2
"_ [_\0_] ok Os]'_}-Ak[-o_On (2.118)_

When (2.95) is used for solving problems of the bending of plates with

stiffening ribs by the Ritz method, it is not necessary to satisfy beforehand

the statical boundary conditions (2.113), (2.116), and (2.117), since they

are satisfied automatically. The accuracy increases with the number of

terms taken in the expression for the deflection

w = _,, CrnW,.n(x,y) (2.119)
m

and with the appropriateness of the functions w_(x, y) selected. The

geometrical conditions (2.96) to (2.98) must be satisfied beforehand. In

addition, the conditions (2.99) inside the plate must be satisfied beforehand

by a suitable selection of w,,(x, y).
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§ 7. APPLICATION OF CASTIGLIANO'S VARIATIONAL

EQUATION TO THE PROBLEM OF BENDING OF

A PLATE WITH STIFFENING RIBS

The potential energy of a plate with stiffening ribs is given by (2.87),

which can be written as follows: (]62/, p. 294):

V-- m

2 (1 ! v_) D _ [M_ --}-Mu 2 -- 2vMxMu --F 2 (1 -{- v) Hx2uIdxdg "F

!

+ _- kc_ +,%] • (2.120)

"The moments M_, M u, H_ u, L_, L,_are interrelated by (2.19) and (2.73):

aaMx a2Mtt 2 021lxt_ +
Ox 2 -b --O_- .-F _ q = O.

(2.121)

Let us, in addition to the actual state of stress in the ribbed plate,

consider another statically possible state

Mz 4" 8M_, M u q- 6Mu, H_, v -k 8H:,u,

L_k -t- 8L_, L,, k + 8L,,k, (2.122)

which also satisfies the equilibrium conditions

a_ a s

0_ "M_ + 6M:,) + _g2 (Mv+6Mu)+2 _ (H:¢ u + 8H_u) + q =0,

L.k at- 6Ln_

{}4

d(L,k + 6L_,) --[mh (s) + 6ink (s)l = 0].

Id (L_ nt- 6L_) --(Vb, + 6Vb,) = 0+Us

From (2.121) and (2.123) it follows that

(2.123)

(2.124)

02 a _

0_ (bmx) q- (sma) + 2 (bHxu) = 0,
(2.125)

and from (2.19) and (2.124) that

6L,_

Qk

-{- _s (6L_) -- 6Vbk = 0
Qk

(2.126)

where

S

8Vb,= -- _'8pk(s)ds + 8VOw.
0

(2.127)
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The variation 5V of the potential energy is by (2.120):

6V
D (I-- v¢) [(Mx-- vMy) 6M_ + (M u--vMx) 6My +

S
I

+ 2(1 + _)Hx_SHxu]dxdy + _Vk, (2.128)

where

Yk

(2.129)

Equation (2.128) can be written as follows (]62], p. 296) [this is evident

from a comparison of (2.62) with (2.75) ]:

8V =I4_ [b(N+ --OH+_ +-t-_)w --on%'"+Ow+ ]_ +SI6M_q-Oh--]as

l

(2.130)

where

Lo= L+F.

We shall now determine OVk. Using (2.10) and (2.14), which are valid

for the actual state of stress, (2.129) can be rewritten as follows:

6_,_5 (Lnk)l ds = dO,, O_k 6
8V, = _[&o,_6(L,D+ _II ds Qk) L_ +

¥k Yk

{dO,_+ o_ I ds.
(2.131)

Integration by parts yields

1 d 1 #bL,,k_lds. (2.132)

Since

Ow+ 0w- 0w

/0w
0w + 0w- _ _-

on Yk, (2.133)
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we obtain, using (2.126)

Y_

(2.134)

Integration by parts of the second term in (2.134) yields

Yk

(2.135)

where

_mk (s) = 8M $ -- 6M;- ]

_ al-l-j_, + aH + ;
--Sp,(s)=6(A'_+-_-)--8(Nn +-_-)I

(2.136)

[cf. (2.3) and (2.60).]

Substitution of (2.135) in (2.130) finally yields

8(N,,+--_-_)wds--_SM,,_ds.8V = S Olin, c_
1. I.,

(2.137)

If the plate is built-in along L,

0w
w=O, _-=0 on L. (2.138)

We obtain, therefore, from (2.137)

8V=0. (2.139)

If the plate is hinged along L, 8Mn=0and w=0onL, and (2.139) is again

aH,,_valid. Finally, if the plate is free along L on which M_ and Nnq-_}-]

are given, the variations of these magnitudes vanish on L, and (2.139)

remains valid.

We have thus proved that Castigliano's equation takes the form (2.139)

in the case of bending of a plate with ribs, 8V being given by (2.137).

When we solve approximately the bending problem with the aid of (2.139),

we actually define the shearing forces N +, N +,/V_'_, N_-_, according to (2.73),

Hl¢y, x,by specifying MI-,M_', - M + M + and H_.

Hence the loads ink(s) and Pk(S) (2.3) on rib Yh are also specified in this

case, i.e., the internal moments Lr_ and L_ in the rib, entering in the

expression (2.129) for 8Vh, are also given.

In fact, the latter are expressed through rak(s) and Pk(S) by means of (2.26)

and(2.25), the constants ¢,_ and _ being determined from (2.40).
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§8. REDUCTION TO THE BOUNDARY-VALUE

PROBLEM OF THE THEORY OF FUNCTIONS

OF A COMPLEX VARIABLE

The solution of the problem formulated in §1 reduces (cf. Chapter

I) to determining the functions _k(z) and ,_(z) (k =0, 1, 2 ..... l) of the complex

variable z = x W iy, regular, respectively, in each of the domains

Sk (k = 0, l, 2..... l), except at the points where concentrated forces and

moments are applied. These functions are determined from the boundary

conditions (2.1), (2.3), (2.29), and (2.8) (cf. note onp. 62 at the end of this

section). The deflection w of the plate in Sk(k=O. 1,2 ..... l) is expressed

through them by (1.23):

w_= w_+ _ = 2 Re_% (z)+ x_(z)]+ w°(x, y). (2.140)

where Xk(z)=_@k(z)dz; and _._k(x, y) is a particular solution of the differential

equation (1.13) of the bending of a thin plate:

AAwk = 1 qk(x ' y). (2.141)

In order to simplify the analysis without restricting its generality, we

take as particular solution w°(x, y) (k = O, 1, 2..... l) that obtained when no

stiffening ribs are provided. This solution (the basic deflection) will

henceforth be assumed as known.

In this case

w_= 2 Re [z%(z)+ X, (z)l (2.142)

represents the additional deflection of the plate, caused by the presence of

the stiffening ribs. Certain additional strains and internal forces in the

plate correspond to this additional deflection. The functions %(z) and _k(z)

are obviously holomorphic in the corresponding domains Sk(k =: 0. 1, 2.... ,0.

We shall now express the boundary conditions (2.1), (2.3), (2.8), and

(2.29) through the functions _k(z) and _(z). Condition (2.1) coincides with

(1.55) which is equivalent to (1.65). Since, by hypothesis, _0(x,y) satisfies

the boundary conditions (2.1) on L, i.e., l°(s)=l(s)on L, (1.65) reduces to

--×%(_)-FTq_'o(x)q-_po(._)=--iC,_+e2/onL j (]=1,2 ..... re+l), (2.143)

where x is the complex coordinate of the point on L, x = (3+ ,)/(l--v); C u

and Cn are, respectively, real and complex constants.

We rewrite (2.3) first in the form

= -- rnok(sD -- i pok (s,) ds, _+
0

+ rn_k (sD-- i pkk (S_) ds_ -t dsl

oL o j
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or, using (2.25),

/ k (s) = 1,+,4(S) -- 14+(s).

The functions lok(s) and l+k(s) are expressed through the analytic functions

Wo(Z), +0(z), W4(z) and +4(z) by formulas similar to (1.65); the latter equation

becomes

-- ×% (t) + two (t) + *o (t) = -- × % (t) + t W_(t) + % (t) --

lk 1 " - C_k) on Ya,
2D(1 --v) 2D(1 --v) (_C84t- (2.144)

where t is the complex coordinate of the point on contour F; Cek and C_k

are, respectively, real and complex constants. In deriving (2.144) we made

use of the continuity of the bending moments and shearing forces,

corresponding to the basic deflection w °, when crossing Y4 from So to S k

(Figure 6). The functions 14=I4(s)=Ik(t ) are defined by (2.25). These

functions depend on the jump in the forces and moments across Y4, and are still

unknown.

We shall now transform (2.8) by expressing its right- and left-hand sides

similarly to (1.76). Since, by their physical meaning, the first derivatives,

with respect to x and y, of the basic deflection w ° are continuous when

crossing Yk from S O to S,, we obtain

% (t) + t W'0(t) -1- _2o (t) = W, (t) + t W', (t) + ** (t) on %,,. (2.145)

Finally, (2.29) is similarly reduced to

I ( C3+ Ow_
"_, (l) + tw' 4 (l) "F _, (l) = 4[ I Jk (s) ds + 2i dt on y,_,

"o'

(2.146)

where

Ow° aw ° ax aw ° Og 1 {aw ° i °w°)a_ = _'_ _ au at 2 k_- _ "

The boundary conditions (2.1), (2.3), (2.8), and (2.29) have thus been

reduced to (2.143) through (2.146).

Condition (2.143) states that the additional forces in the plate, caused

by the stiffening ribs, satisfy the zero boundary conditions on L, while

(2.144) defines the jump in the additional internal forces in the plate across

y,. Condition (2.145) states that the additional strains in adjacent plate

domains along y, are equal, while (2.146) states that the strains of the ring

and the plate are equal.

The right-hand side of (2.146) depends on the unknown strains of the

ring, which are functions of m,(s) and P+(S) defined by (2.3). These are

determined by integrating the basic equations of the theory of small

deformations of thin curved bars.

The boundary conditions (2.143) to (2.146) are the initial conditions for

solving the problem of the elastic equilibrium of a plate reinforced by thin

curved stiffening ribs. We repeat that in these boundary conditions
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l_(k=l, 2 ..... /} are still unknown functions. The unknown functions ¢Pk(z) and

4_(z) (k = 0, l, 2..... l) are defined and holomorphic, respectively, in each

of the domains Sk into which S is divided by F.

These functions are discontinuous across P. We introduce two functions

¢p(z} and 4(z) which are piecewise-holomorphic (]82], Chapter VI) in S and

discontinuous across F. The above boundary conditions then become

-- x _(--_)+ _ _" (_) + 4 (') = -- iCls_ + C_z on L, (1= 1, 2 ..... rn -}-1),

-- _+(t) + t q>'+(t) + ,+ (t) = -- _q_--(t) + t q_'- (t) + 4- (t) + (×+ 1) g (t) onr,

_+(t) + tcp'+ (t) + 4+ (t) = q)- (t) + t _'- (t) + _- (t) on I',

q_- (t) + t q_'- (t) + _- (t) = P (t) -- R (t) on r.

(2.147)

(2.148)

(2.149)

(2.150)

The limits of the functions ¢p(z), ¢'(z), and 4(z) when z_t from the left

and from the right are denoted, respectively, by the superscripts "+"
and "--". The functions g(t), R(t), and P(t) assume the values

7k--iCr,_t -- C_ (2.1 51)
g_ (t) = 8D

s

P"')={.I I2.152/
o

Ow_l 1

k_(o= _],- _ c,_ (2.152a)

on each contour _'k (k = 1, 2..... l), respectively.

The unknown function Pk(t) is easily expressed through Is(t) by means of

(2.28) and (2.25), and vice versa. Thus,

, (/(1 + l'_
P _(t) = -_ _ol t _ -_ ) [C,k-- iV°k (t -- to)+ lt(t)] +

+ \U_-_/(_ 1_ i', Ic,.+ zv0,(t- to)+ t, (oi I _. (2.153

According to (2.57) and (2.151), the function g(t) is single-valued on

y_ (k= 1,2 ..... l).

Using Sherman's method [193], we consider first (2.148) and (2.149).

Subtracting the first from the second, and using the conjugate quantities,
we obtain

_+ (t) -- _- (t) = -- g (t) on r.

We then find from (2.149):

4+ (t) -- _- (t) = h (t) on F.

where

dg (t)
h (t) = g (t)" + Tg' (t), g' (t) =

dt

(2.154)

(2.155)

(2.156)
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Theproblemof determining¢p(z)and_;(z)hasthusbeenreducedto solving
(2.155)and(2.154).Thesolutionis [193]

o-. i ('g(t) dt

(z) = _ tz) -- _ _-i-_-_

1 _h(t) dt

4 (z) = 4 o (z) + 2_i _ t -- z

(2.157)

where %0°(z) and _2°(z) are unknown functions, holomorphic throughout S,

which have to be determined.

Substituting (2.157) in (2.147), we obtain

__ ×q_O(T) + ._q_o'(x) + 4o (T) = ¢ ('0 -- iC,7"r + C2p on L t

(/=1,2 ..... re+l),

(2.158)

where

× _+ _ _g'(t)dt I _h(t)dt
 ji- (2.159)

The functions _°(z) and *°(z) are thus determined by solving the first

basic problem of bending of a plate whose middle plane forms a multiply-

connected domain S bounded by the contour L. After finding _°(z) and 4°(z)

we obtain from (2.157) the piecewise-holomorphic functions ¢(z)and _;(z),

expressed through the unknown function g(t).

Substituting then ¢(z) and 4(z) in(2.150), whose right-hand side also

contains g(t), and using(2.152), (2.28), (2.25), and(2.151), we obtain onr

an integral-differential equation for determining ,_(t), through which ¢(z)

and 4(z) are then found from (2.157).

Note. If the domain S is simply connected and the edge L is not free,

aw0
but wo(s) and _- are specified on it according to (2.2), then, obviously,

everything said remains true, except for the boundary condition (2.147),

which is replaced by

q_(_) + _q_'(T) A-4(_) =0 on L. (2.160)

If the plate edge L is hinged, (2.147) is replaced by the appropriate

boundary conditions ] 65/.

§ 9. DETERMINACY OF FUNCTIONS

INTRODUCED

We shall now consider the determinacy of the piecewise-holomorphic

functions _(z) and *(z), the functions q_(z) and _°(z) which are holomorphic
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throughoutS, and the function g(t), introduced in the preceding section,

when the state of stress in a plate with ribs or the deflections of this

plate are given.

1) Let the state of stress be given. In this case(cf. §2, Chapter I),

the functions q_0(z), %(z), X0(z), %(z), _k(z) and Xk(z) (k = 1, 2 .... ,l) are

respectively determined except for the expressions

ice+% + ,80, 0;'+ i_0'. (%'+ _o' ) z + _;"+ ig;',

¢c_z+ o"_+ ifr_, 07 + _'_' (0;' + ffr,,*)z+ ,,7 + gr_'.

(2.161)

(2.162)

It is alsowhere ck, 0_, p_, 0_', I_', 0_', _" (k = O, 1, 2..... l) are real constants.

obvious that, if we add to the above functions expressions (2.161) or (2.162),

respectively, the stresses in the plate will not be affected: if we replace,

respectively, the functions

% (z) by % (z) + ickz + ct"k+ i_"k ]

% (z) by _k (Z) + 0_' + il_' [,

_k (z) by X, (z) + (a;' +i1_;') z+a','+i[l','l

(2.163)

only the deflections

w_ = w ° + 2Re I}-%(z) + Xk(z)l,

will change, and we obtain

(2.164)

w, + 2 (0_ + 0;') x + 2 ([i_ -- 8; ') Y + 2a_" ( 2.165)

(k = O, 1, 2..... l)

instead of wk.

The additional terms in (2.165) [cf. (1.30)] describe the rigid-body dis-

placement of the plate in each domain S_ separately. However, the plate

deflections must be continuous across V, from So to Sk, i.e.,

oo=o.o?I(k= 1,2,

Substitution of (2.165) in (2.166) yields

(0; + o;'),, + (_- _;') y + ,,;" = (o;+o0')x + (_- _;') y + 0;-.

The following 3t relationships between the constants in (2.163) are then

obtained:

(2.166)

_+o;' =o;+o;' }
8o- _;' = 8;- 8;' (k = _, 2..... 0.

0;" = _7

(2.167
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Hence,of the 7(1+1)real constantsappearingin (2.161)and(2.162),
only4l+ 7 are independent, for instance

c0,%, _;, ,_;, _0, _;', 80" (2,168)

and

Ck,[_'k',a'_',[t" k' (k=l, 2..... /) (2.169)

We shall now consider how substitution (2.163) affects the stresses and

strains in rib _/k. Since the additional terms in (2.165) represent only a

rigid-body displacement of the plate, the corresponding additional moments

and forces ms(s) and pk(s) vanish, so that the functions Is(s ) given by (2.25)

remain unchanged. The substitution leaves also unchanged the constants

C4k. V°s , given by (2.40), and the functions If (s) (2.25), Js(s) (2.28), Lns. L_s

(2.26), Vbk (2.23). In other words, substitution (2.163) does not affect the

stresses in rib _s, as ought to be expected.

The additional deflections and slopes of the sections of rib Ys, caused

by the substitution (2.163), are determined from the condition that the

deflections and strains of plate and rib be equal:

As = ws, _(0_s -- ions) = i 0_s 0ws
Ox + _ on _s

(k = 1, 2..... l).

(2.170)

Replacing wk by (2.165) in (2.170), we obtain the following substitutions

A s na As + 2(a_ +a'_')x + 2([5_--[_') y + 2a_',

f(0xs -- i0,s) Ha _(0,s -- i0,s)-F 2i (as-+ a;')q- 2 (_ -- [_')1"_ ( 2.171 )

The additional terms in (2.171) also describe only a rigid-body displacement

of the rib _'s.

Putting t=to_ in (2.18) (tos is the abscissa of point s=Os, the point from

which the arc lengths are measured on _/s), we find that the substitution

(2.1 63) causes the constant Css= t0k (0°s- i0°k) in (2.17) to be replaced by

-" 00 __. 0 2i (a; a;') + 2 ([_;tok( ,s 10,s) + + -- [_;'). (2.172)

Since the functions %(z). _s(z), and Xs(z) are interrelated by the boundary

conditions (2.143) to(2.146), it is of interest to determine how the

substitution (2.163) affects their fulfilment.

Carrying out the substitution (2.163) in (2.145), we obtain, as ought to

be expected, relationships coinciding with the first two equations (2.167).

The same substitution in (2.146) leads to an identity if (2.172) is taken into

account and it is remembered that Js(s), givenby(2.28), is unchanged.

As aresult of the substitution (2.163), the expression

I-- ×% (z) + Z_'k(Z) + xps(z)l is replaced by

-- xWs (z) + z_'k(z) + % (z) + ic_ (x + 1) _ + (a;' -- _;)+i ([_'k'+ _'k)

(k=0, 1,2 ..... l).

(2.173)
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Thus, by a suitable selection of the constants c_ (a_'--_a'_), and([_' +×[_)we can

give any values to the constants C_ and C7_= C'7_+iC'Tk , entering in (2.144),

and also to the constant C2.,,+, = C_.m+_-F iC_.,,+lin (2.143). The constantC,.m+, is

determined during the solution of the problem from the condition that the

deflections (2.142) be single-valued.

Thus, when the domain S is bounded, we can, by placing the origin of

coordinates at any point in S_, select the constants (2.168) and (2.169) so

that, e.g., the following (4/--F 7) conditions be satisfied:

C2,,.+, = O, % (Zo) = go (zo)= Im%(zo) = O, ( 2.174)

C_=--V°_, C,_=--C_--iV_]o_, Im[xk(z,)]=0(k=l,2 ..... 1), (2.175)

where zk is any point in Sk (k = 0. 1.2 .... /). Instead of the condition %(zo) =0

in (2.174) we can require that *0(z0)=0. If the domain is simply-connected,

the condition Im%(z0)=0 can be replaced by the condition C,.m+l = 0.

Conditions (2.174) and (2.175) define completely the functions q%_z) and

%(z).

If the domain S is infinite, we can require that

Imq%(oo)=0. C2.,=0. %(¢_)=0, X0(_)=0 (2.176)

instead of (2.174) (assuming the stresses to be finite at infinity).

We can replace %(_)=0in (2.176) by ,0(_)=0. The conditions (2.175)

and (2.174) or (2.176) eliminate completely the indeterminacy of the piece-

w_ ho!omerphic ......¢.... +;._,,o..... .v_-,,"_....._,_- The iniLiai freedom in determining

the functions gk(t) is restricted by (2.175) which, inserted into(2.151), yields

according to (2.25):

g,(t) = -- 8_ [1_ (s) + iV°t.(t -- to) + Ca] = -- -8-D1* (s), (2.177)

where, as was shown above, the function I_ (s) is completely determined.

Thus, when the stresses and the additional conditions (2.175) are given.

the function g(t), and therefore also h(t) defined by (2.156), are completely

defined. Since the piecewise-holomorphic functions qD(z) and ,(z) are thus

also completely defined, we conclude from (2.157) that all functions q_0(z)
and _°(z), which are holomorphic in S, are exactly determined.

2) Consider now the case when the plate deflections are given. Since

the state of stress of the plate is then completely defined, the indeterminacy

of the functions considered is reduced. Obviously, there is no more general

substitution than (2.1 63). We shall now determine what additional conditions

are imposed on the constants by the substitution (2.163), if the deflections of

the plate are given.

In this case the additional terms in (2.165) must vanish:

a'k+a'k'=O, 15_--[_'=0, a:" =O (k=O,l,2 ..... I). (2.178)

Condition (2.167) is in this case satisfied identically; hence, the

constants (2.161) and (2.162) are linked by 3(l-_-l) (and not 3/) relationships,
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so that only 4(l+1) of them are independent, for instance

Co._o,80, 8;" [.
ck, _;'. _:', p:' (k = 1, 2..... 0 / (2.179)

which can be determined from the following conditions:

_o (Zo) = O, Ira/. o(Zo) = O,

C_ = -- Vb°,, Cz, = -- C,, -- i'V_ Ta_, Im [X_ (z,O] = 0

(/== l, 2..... O.

(2.180

(2.181

The above statements regaraing the functions g(t), h(t), _0(z) and %(z) remain

valid.

Note 1. Conditions (2.175) or (2.181) enable us to express throughgk(t)

the right- hand side of(2.150}, i.e., the function Pk(t) given by(2.153):

Note 2. If

$

0

I

i.e., the contour F=_ ¥k

(2.182)

O'--t =Vk ---- cons? on ¥_, (2.183)

of a plate without ribs undergoes only a rigid-

body displacement, then obviously reinforcing the plate by an elastic rib

along F does not affect its state of stress. In other words, stresses in

the plate will not depend on the rigidity of the rib. In fact, under condition

(2.183) all the boundary conditions (2.147) to (2.150) are satisfied if we

assume that the additional stresses and strains in the plate, caused by the

stiffening rib, vanish identically:

(:Po(z) ---- (F_ (z) --_ ao = const, _o (z) = _ (z) = a'0 = const,

c,.j = o. c=._= %- "_o. e_(t) = o. c3, = 2_(v, + ;o + _';).

(k= 1,2 ..... /), (j= 1,2 ..... m-I-l).

(2.184)

We therefore conclude on the basis of the uniqueness theorem (cf. section

5) that (2.184) represents the solution of the problem under condition (2.183)

which, in this case, is only a rigid-body displacement of the plate. The

internal forces and moments in the stiffening rib vanish also(cf. (2.47) and

(2.48)).
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Note 3. If the basic deflections of the plate are such that on ¥_ is
satisfied the condition

_n/o_ = ! • 1 l g.,]

or

A/'--_ - - (2.186)ds _,,_ ! = ,_D (%C.,t,+ b,C.,).

!

where ak, b_, C. I are constants, then a rib, whose rigidities are Ak =
!

does not affect the stresses in the plate.
and Ck= bk...l_ak ,

In fact, under conditions (2.185) or (2.186) all the boundary conditions

(2.147) to (2.150) are satisfied if we assume that

q_o(z) = O, q>k(z) _- a/t _ const, Clj _ 0 I

% (z) =- 0, % (z) = % ----const, C_../,- 0 Jg (t) = C. I = a

(2.187)

(where a acquires the value % on yk).
We conclude on the basis of the uniqueness theorem that (2.187) is the

solution of the problem under condition (2.185). This solution represents

only a rigid-body displacement of the plate. We shall now show that in this

case the load acting on the stiffening rib from the plate vanishes identically.

In fact, we obtain from (2.177), by substituting g(t)--Col and differentiating:

,t ,v_" (2.188)_-Q (s)-

Substituting in (2.188) the value of /i($) according to (2.25), we find

$

-- mk (s) + l Sp, (s,) dsl= iV°_.
0

Hence

mk (s) = O, pk (s) -- O,

which concludes the proof.

§10. CIRCULAR PLATE WITH CURVED

STIFFENING RIBS. REDUCING THE PROBLEM

TO FREDHOLM'S INTEGRAL EQUATION

Consider a circular plate of radius R, reinforced by l curved stiffening

ribs. In this case (Figure 8), S is bounded and simply-connected, while

So is bounded and (l q- 1) -fold connected.

53



FIGURE 8.

It was shown in § 8 that this problem reduces to determining the piece-

wise holomorphic functions (_(z) and ¢(z) defined by (2.157). The functions

_°(z) and _b°(z) entering in (2.157), holomorphic in the circle r,.<Rl , are

determined by solving the first basic problem for the circle with the aid

of (2.1 58), in which, because of the arbitrariness of the unknown functions,

we can put C,a =C_.,=0. . Thus

__ _o (_).{_T(po'(T)-b_2o(T)= _ (T)on L, (2.189)

where the function _(,) is defined by (2.159).

! d_ and integrating along the circle LMultiplying(2.189) by 2_' T--z

where Jz]<R, , we obtain

1 O(_)d,

L

(2.190)

where

o.=_o(0), a,=_o'(o). (2.101)

Using conjugate values in (2.189), we find

-- xq_ (_) + ._o, (_) + _o (T) = ¢ (T). (2.192)

1 d_
Multiplying (2.192) by 2_/ _--z
obtain

and integrating along L, where Jz I <Rl, • we

where

a_ = ,@'(0), 2a, = q)o-(0). (2.194)
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Wedeterminetheintegralsin theright-handsidesof (2.190)and(2.193)
by introducingthefollowingfunctionsofz:

x ['g(t)dt 1 _h (t) dt

_"(')= - _-_T:_--' ¢, (_)=- _--_-_-r-_=

R_.2_ re'(t_tt
_Pa(z)= -_- 2ai _ t--z

(2.195)

In accordance with (2.151) and (2.57), we shall assume that the functions

g (/), g" (t), and therefore also h(O , are single-valued and continuous, and

satisfy the HSlder condition (H).

The functions ¢_(z) (i= 1,2,3), defined by(2.195), are holomorphic

everywhere outside F, and therefore also everywhere outsideL, and vanish

at infinity.

We therefore have for Izl<R

1 _¢k(_)dr /

I fc-_d, /(k=

1,2,3). (2.196)

By (2.159) and (2.195)

_('_) = Cx(x) + ¢lh (_) .-4-¢,(_). (2.197)

Substituting (2.197) in the integrals in the right-hand sides of (2.190) and
(2.193), and using (2.196), we obtain

e

I _ h (t) dt z Sf (t) dt--_ ___ _-_ r__,
Z _ Z

(2.198)

We substitute (2.198) in (2.190) and (2.193). Then

-x_'(z)=-- h (t) --zg" (t) dT +-_; +2_2_ + _,z
r-_

Z

(2.199)
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The functions qD0(z)and _°(z) in (2.199) are determined by the function g(t)

except for some still unknown terms. The constants %, %, %, a, are

determined from the condition that they are coefficients of powers of z,

corresponding to tile subscripts, in the expansions of q0_ (z) and _0 (z). We

therefore set z=0 in [(2.199) and] the equations obtained from it by

differentiating with respect to z, and take into account (2.191) and {2.194).

This yields:

a, =0, % = x_o, (2.200)

x% -- at = h (t) dt. ( 2.201 )

Using (2.156), integrating by parts the right-hand side of the last enuation,

and noting that the functiong(t) is single-valued, we can reduce (2.201) to

the form

xax-- a_ = _ Ig(t)dt---_dtl.

Hence, a, is real:

a, = l_(x-- I) 2hi [g(t) dT--'g (t)dtl.

Substituting(2.20O) and (2.2027 in (2.199), we obtain

(2.2o2)

[Iz zY_ xR_ di
_°(z)=%+ 2nix(u----l)R_ g(t) z}_ R 2 -t-

+ D[ _ d xR_ (t -- z)_zt______+ z (R_ --'t Y) ]

,o (z) = %-- -_- q_*' (z) + 2hi(x-- l)z g(t)dt+

-= -]
! _ g _0 I -- } d/

(2.2037

We have thus expressed through g(z) the functions q_°(z) and _°(z), entering

in the expressions for the unknown piecewise-holomorphic functions (p(z)

and ,(z) defined by(2.1577. The latter must satisfy the boundary condition

(2.1507, which have so far not been used. The right-hand part of (2.1507

contains the function P(t), and also the unknown constant Ca,. To eliminate

this constant, we differentiate (2.150) with respect tos. This yields

}o_[_'-(to)+_'-(to)l+_q_'-(to)+_'-(to)=P'(,,%)--R'(to) on F, (2.2047

I

where F = _, Yk, t0 is the complex coordinate of the point on F.

k_l

56



We use Sokhotskii's formula (/104/,

boundary values of the functions (2.157) and their derivatives:

1 .u_ 1 _g(t) dt±
_- (to) = -_ _.o,-- :---: --

2:u _ t -- to _o (to)

_-(to)=--_-g(to)--_-g'(to)+2ai_t--t,(Odt+

+ _o(to)

I 1 _g'(t) dt__o,,t _
_ -r" _V to;

_'-(to)= -_g"(to)--_-__ •--

! ! Cf(t)d:__
_'- (to) = -_ o_ (to) -- 2_i ; t -- to -- qjO.(to)

! f2 -"
_'- (to) = -- _g'(to) t o -- 1 t_og, (to) -- 1 -"5tog (to)+

+ q.l--r[[_g-r_ +_g'(O + T£ (01dt + ef'Uo)
_--L o

p. 178) to derive the necessary

(2.205)

The functions _; (io'; and _(io} are obtained from (2.203) ior z = to.

Substituting (2.205) in (2.204), we obtain:

m <_-,. j, ,_,_'--',.-_o_.[(-_+})_ ÷
+ ,0.] b

where

2-

g_(to)= to2Ivo'(to)+ _' (to)]+7o_°"(to)+ _' (to).

(2.206)

(2.207)

The rigidities A and C acquire on each contour Yk, respectively, the values

Ak and C_ (k = l, 2 ..... /}.

We determine the function Q(t0} from (2.203).

Thus, for z=t0,

tot-- _,
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Differentiatingby to, we obtain

1 {_ xR_-{-'t212o--2R2tt'to dt--_o, (to) = 2nix (x -- 1) R_ g (0 (toT-- R_)2
|

(2.207a)

The right-hand side is integrated by parts, remembering that g(t) is single-

valued (cf. §8):

S g (0 xR_+ _ t_o- _n;/-to d7 =(td- nb"

= [e (0 _ xn_ + _ t_- 2n'-,7,tto

_ _ g, (t, t y xR: + _ t2°-- 2R_to d ] dt(to_--R_f ] =

=- e'(O ?¢ (tj-_)to

I_-i-d [ t +(x--l)nt_(t_--(tt'°--2R_t°+m,)' R_t)]=

= _ _I(x-,) n;(_- 2n;to+ _,O ](td-- R_,)" F t i" g' (t) dr.

Substituting these values in (2.207a), we obtain the function qD°'(to). The

functions _°'(to), ,°'(to)are obtained similarly. Finally,

_o, (to) = _ g" (0 k, (t, to) dt + g" (t) k, (t, to) dil 1

(2.208)
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where

k_(t. to) -- 1 {'/._ ¢',_- z)R_

k,(t, to}-- 2x(ito- Rb' t _,,(_-- z)R,_

k,_t, to)= _' _'-_

k_(t, to)= 2g (=-- l)

-P t ,_(,_-1)/-1
k'(t" t°)_" 2 (-_-D--l) [-_o "t" ite--R_ J

Substituting (2.208) in (2.207), we find

where

(2.209)

(2.21o)

+ (r.- _) k. (to,o + k,(to,0

kf(to, O-- tot _ ,

+(_.-,_)_.,,00+_.,,00
Equation (2.206) is therefore reduced to the following sir_gular integral-

differential equation:

r

(2.211)

(2.212)

59



=Ulr - -

,2:,2,
Using conjugate magnitudes in (2.212), we obtain

_,(to,t): f (t)_ + -_- _)f (t);, a, +

+ _ Po+ t -- to/ --
(2.213)

'__+ _.i ) _ _t - to ,- to=

' ' '
We introduce the symbols

}g(t) = _ (t), g (t)= Q,(0

g'(t) = Q',(t), g" (t) t'_ = o;(t). (2.214)

The system of integral-differential equations (2.212) to (2.213) is then
written in matrix form:

1 _ K (to, t) O"(t) dta(to)(Z(to) -I--_ t:To /(to). (2.215)

Here Q(t)=((h, 0,) is an unknown vector, afro) = I]a_(t0)[[ and K(to,t)=HK_(to, t)l[

are known square matrices, and fifo) = (I,, f=) is a known vector. The elements
of the matrices and vectors introduced above are defined as follows:

1 I -'3
a.(t.)--2iD(-c---_) to

I :/--- _ _ _o) -- t,) n,(to, t)K. (,o,n = - "E_t---'-:% -- (t

K,, (t°, t) = / [ 1.{. _(t--to) i't-- to ] -- (t -- to) fl= (to, t)

(t--to'-,) ""l l +_-_-7oto -- (t-- to)_g--g_7'K,.,(to,t)= --'E

/(. (t°, t) = -- _ _t -- t° I t-- to
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According toN. P. Vekua 112/, we write

!

co= I.¢ (t,)dt, + C,, = _o,(t. t,)¢ (t,)d,,+ Co,

(kfl,2..... O,

where t.k is a fixed point on Yk; Co* is an arbitrary constant vector;

.(t, tt)={10 if t_Et.d,if t_Et.d.

From (2.215) we obtain the following singular integral equation:

I ['/((to. t)o'(t)#t_i _ 7_-_to + a(to)=(to, t)O'(Odt=f(to)--a(to)Co,

where Co acquires the values C0, on the contours _/_.
We introduce the notation

K,= (to, to)= B,,t.

i.e.,

In our case

K (to,to)= IIB,_II= B.

The determinant of this matrix is -- I, i.e., it differs from zero

everywhere on F.

We find from (2.217) that

co, = Q(t._).

Writing to_-t.k in (2.215), we obtain

t 0

[a(t.,)l-'[f(t ) I fK(._, Oo (0_
co,= L "' --_-t_ 7----_._ ]'

(2.216)

(2.217)

(2.218)

(2.219)

(2.220)

(2.221)

(2.222)
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Substitutionof (2.222)in (2.219)yields

_-t)1 _N (to,t__ tot)Q' (t) dt. + fa (to)(_Cto,t) Q' Ct)dt = f (to) -- a (to) C., (2.223)

where N(to,t)and C. (C.l,C.2)are known functions which on the contours ¥_

acquire the values

t--to ]
N, (to,t)= K (to,t)-- a(to)[a(t.,)l-t/((t.,,t)t--t.,}, (2.224)

C.k = {a(t.,)]-' t (t.,) }

respectively. We rewrite equation (2.223) as follows:

^Q'= _)t_----_o + No(to.t)Q'(t)dt = f(to)--a(t°)C.,

where No(tot) is a known matrix which on ¥k acquires the values

(2.225)

A'o_(to, t) ---- N(to, t)--B t- _a(to)o(to, t) = Ko(to, t) --
t _to

- . c,.),°c,.)r-,_,(--'_.',o.
m •

(2.226)

with

Ko(to,0 = IIKo_(to,0[I

Ko,,(to,O= 2 U - to) _,t--_-_o-'°] -

,,-o,,,.o
., (,-,0_o_,)_Kot, (to, t)= 2 (t -- to) '_t--'_-'_to

'):-- 2#D + _- to o (to, t) -- t"_, (to, t)

t -- to" )' (T27 _o-i -Kotl (to, t) = 2 (t -- to)

+1 -",-),oo,,..,,--,'>
' (:-_o-,)-Ko,, (to, t) = 2 (t - to) \t -- to

(2.227)
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Thecharacteristicequationcorrespondingto (2.225)is:

Mr}'--_. _ Q° (t)_ = ,. (t0). (2.228)

Because of (2.220), the characteristic system (2.228) consists in our

case of separate equations

ni _ t -- to = t., (to)

__1 1" (2.229/_i _ t -- to = l., (to)

The indices of equations (2.229) are equal to zero, and therefore these

equations can be solved for any right-hand side t._(t0) (/= l, 2). Their

solution is given by the inversion formula for Cauchy-type integrals (/81/,

p. 138):

8 f f.(0dt
¢(t,) = _-_ t-:_, - (2.230)

This is the general solution of(2.225), with

t.(to) =f (to) --a (to) C. - 1 _N0 (to, t)Q' (0d/. (2.231)

1"

Substituting (2.231) in (2.230), we obtain the following Fredholm integral

equation of the second kind, which is equivalent to(2.215):

where

(2.232)

B _a(t)dt

B ft(t)cu
r (to) = _ _ t -- to

B _ No (t,, t) dt,

K'(t*' t) = _t) tq--Yo

(2.233)

The functions a_ (t) are defined by (2.216).

Fredholm's alternative is applicable to equation (2.232). To prove that

it can be solved it suffices therefore to show that the corresponding

homogeneous equation, obtained from (2.232) for

F' (t0)+ ¥ (t0)C. = 0 (2.234)
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has no nontrivial solutions. By (2.220) and (2.233), we can rewrite (2.234)
in the form

_ [j,(t)-- a,,C.,-- a,,C.2]t-_to = 0 ].

_ ", (t) -- a,,C., -- a,,C.=l t--_to = Oi (2.235)

Solving system (2.235) by the inversion formula for Cauchy-type integrals,
we find

fl (t) = a=C., + a1_C.2I
f, (l)= az.C.,-'Fa,sC.2J" ( 2.236)

If we take into account expressions (2.216) for the functions [i,f,,a,_

and (2.224) for the vector C.(C.,,C.2), it is found that C., -----C._ and that both

equations (2.236) coincide. It therefore suffices to consider the first which

can be written in the following form, identical with (2.185):

+(-+-)+] (2.237)

Let now _: (t) be any solution of the homogeneous equation corresponding

to (2.232), and let g.(t). _.(z), _.(z) be the corresponding values of the

functions g(t). ,p(z),_(z) defined by(2.214), (2.203), and (2.157), whenQ'(t)

is replaced byQ:(t). The functions g.(t), ¢p.(z) and _.(z) satisfy the boundary
conditions (2.147) to (2.150) when (2.237) holds, and therefore form the

solution of our problem under condition (2.237); on the basis of the

uniqueness theorem (cf. note 3 at the end of § 9) we then obtain from(2.187)

g. (t) = const.

Hence g:(t)= 0, and according to (2.214),

{}'.(t)= 0 everywhere on F. (2.238)

The homogeneous equation corresponding to (2.232) thus has no nontrivial

solutions and (2.232) has therefore always one and only one solution e'(t).

Substituting this value Q'(t) in (2.215), we obtain the vector Q(t), and thus

the function g(t) by means of (2.214). Knowing g(t), we determine from

(2.203) ,p°(z) except for the constant a 0, and _2°(z) except for the constant

a_ =ua0. We then find the piecewise-holomorphic functions ,p(z) and _(z) from

(2.157). The problem is thus solved.

Equation (2.232) can be solved by approximations /3,48,69,79,132/. If
the method of successive approximations is used, we obtain convergence

in the mean, the generalized limit of these approximations giving a unique
solution of (2.232) (/79/, §13).

Note. Theproblemissolvedsimilarlywhencondition(2.160) of the second

basic problem is specified on the external contour L of the circular plate.
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Thefunctionscp0(z)and_)0(z) are then given by (2.203), where x=--I and

a0=--a_. We must also replace × by--1 in (2.209). The solution is

identical to the preceding in all other respects.

(_, )

(¢ 0, )

Cs, "_)

FIGURE 9.

Case of an infinite domain. Consider the particular case

when the middle plane of the plate, reinforced by stiffening ribs (Figure 9),

occupies the entirexy-plane. The domain So is infinite andl-fold

connected. Boundary condition (2.147) disappears in this case. The

functions _°(z) and _)°[z). appearing in (2.157), are holomorphic in the entire

plane, including the point at infinity, and we therefore find from Liouville's

theorem (/104/, p. 209):

q_o(z} = ao = const, _ (z) = a o = const.

According to (2.207) and (2.210), we obtain

Q (to) = fix (tot) ----Qs(tot) ---_0.

The expressions for Ka_(to.t ) in (2.216) and for Koa_(to,t ) in (2.227) are
correspondingly simplified.

Thus, in this particular case the problem is reduced to the same

Fredholm integral equation (2.232), but witha simpler kernel.

(2.239)

§11. FIRST BASIC PROBLEM FOR A CIRCULAR

PLATE WITH A CONCENTRIC STIFFENING RIB

A circular plate with a concentric rib (cf. Figure 10) is subjected to an

arbitrary transverse load and arbitrary forces and moments along the contour

r_ R1.

We determine the additional state of stress, caused by the stiffening rib,

by representing on F the unknown single-valued function g(t), defined by
(2.151), in the form

-4-*o

g(t)= a. _-_. (2.240)

65



where a. are unknown complex constants.

Substitution of this expression in (2.156) yields

_co=_,;o+(.+_on+.,_ (2241)

Substituting (2.240) and (2.241) in (2.157) for [zl<R', we find for the

domain S,:

_ zn_t(z)= _o(z)+ an_,
n_O

(Izl • R)
_;,(z)= ,_o(z)-- (2. 242)

(The contour F in Figure i0 is described in opposite sense to that in Figure 8.

in § 10). Substitution of these functions in (2.150) yields the following boundary

condition for _0 (z) and 4 °(z):

_o (t) + [_o'(t) + ,_o(t) = P(O--R (t)+
_- t" _-_- R n - - R

a-n-_ -- 2, an t-_---ao-- (at + at) -_-. (2.243)
0 2

FIGURE 10.

The function P(O here is expressed according to (2.182) and (2.240) in the form

P(I) = K Ino + 2RD _,B.o", (2.244)

where

o = #o
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(' ')E° ('Bo= g+-_ _+ -d--A]Zjn--2 (2.245)

n _c --_7_
(n=±I,+2 ....).

•4-_ e --F_

The sums _. and _ contain no terms corresponding, respectively, to
.,-co

n=0 and n=2.

Since the functions on the left-hand side of (2.243) are single-valued, the

function Pff), given by (2.244), is also single-valued. Hence, K= 0, i. e.,

l l <2.246>
We expand the function R (t), defined by(2.152,a), in aFourier series:

R(O = 8m:at C"=--22b"°"--l c'"2i (2.247)
--._o

where b, are known complex constants.

Substitution of (2.244) and (2.247) in (2.243) yields

+_ (2.248),p0(t) + _¢' (t) + ,o(t) -- Z an,,"on r,

where

d-n= 2(RDB_,,-I-b-,,)---a,, (n= 2,3, 4.... )/

dn=2(RDB,,nt-b.,)-l-_-n (n= 1.2 .... ) / "
d-t = 2 ( R DB-t "{-b-O--(al -kai)

do = 2(RDBo q-bo) q- Cal/2i

(2.249)

The unknown functions q_°(z) and _l_°(z) are holornorphic within the circle

Izl_R1. We represent them in the form

Zn _ " Znq_oCz)_ ,_, Ea-, _o(z)= % Ea-.
n=O m_

(2.250)

To determine the functions (2.250) we must thus solve the second

fundamental bending problem for the circular dornainS_, with the boundary

condition (2.248).
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I

Solvingthis aroblembyMuskhelishvili'smethod(/82/, §80),wefind

¢o

_0(z)= -" k_ R "
0

oo

_°(Z) = [dn -- (rl "vv 2) d-(n+2)] _'_ "4-

0

+ (Gl+ GI-- d_ 0 _ -- _0

(2.251)

We now reqmre tilat the constants %,a0, a,, anda2in (2.251) represent the
coefficients of z°, zI and as in (2.250). We therefore set z=0 in (2.251) and

i,_ !lie expressions obtained from the first equation (2.251) by differentiating

onc_ _ and twice with respect to z and obtain [cf. (2.191}, (2.194)]:

ao= a0- 2a,-E |
(2.252)

al = d--,-- _1, a_= d-2

Substitution of these equations and of (2.249) in (2.251) yields

Z oo _ -- Z n

q_o(z) = a_ _- + E 12 (RDB__+b__) -- a.] ]_-; + 0o
n=2

_°(z) = _, I2(RDB,, + b_) + a---n + (n + 2)an+_-- "

-- 2(n + 2) (RDB-(,÷_) + b-(,+2_)]_ + a0

(2.253)

The coefficientsbn, defined by (2.247), are known, and the coefficients B,

are expressed through the unknown coefficients a_ with the aid of (2.245).

The functions _°(z) and$°(z), given by (2.253), for domainS,, are

analytically continued across F onto the entire domain S::S,+S0; we can

therefore insert them into (2.157) and determine the functions ,p(z) and _(z)

for the domain So, i.e., for R<[zl<:R _.

By calculating the corresponding Cauchy-type integrals we obtain finally
[cf. (2.242)]

j
% (z)= ¢0(z)-- a-. _-

I

_0(z) = _°(z) + [a_ + (2 -- n) a2__! _--
1

(2.254)

Substituting (2.254) in the boundary condition (2.147). withm=0,z=Rto,

and C,., = Cz,=0, and equating the coefficients of equal powers of _, we
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obtainthefollowingsystemof algebraicequations:

[mort _ O.

I--U
k al+k(a_+a_)=O.

l+i_ - 1 !

2 , , _+_)+ 26_2]= ,,_o- %k-_[_° (_--_7)--"_ ( ' + 8,

(2.255)

(2.256)

(2.257)

(2.258)

1 n

2 (iz+ ff[)+'_(n+2)(l--kZ)_'tF"]+a_,, [(1 + ×k -°")+ n

2(i 1_1

=--2b-. (n=1,2,3 .... )

(2.259)

t

where

A R6,=_D, 6,= , k=R_. (2.260)

We shall now show that the coefficient b-i in (2.247) is a real number.

In fact, by Fourier's formula,

b-_= _-_-_2 at =_-_- + dO,

whence

(2.261)

since the deflections w° are single-valued.

Taking into account (2.261), (2.255), (2.245), and (2.249), we obtain

from the second equation (2.252)

]r_x _ 0

(')'Ial=b-l--al 1+_- 1
(2.262)

Solving simultaneously (2.262) and (2.256), we find

al = 2k2al 61 (x _ 1) b-I
u-------]' ax=2(u_l)W61(2k_+x_l).

(2.263)
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In viewof thearbitrarinessof thefunction%(z)(cf.(2.174)and(2.254)),
weassume

Q0 _ 0. (2.264)

We than find from (2.257), (2.258), and (2.246):

a0 = 2x (81-- 8_)b-_
4u + (× + k 4)(8_+ 82)

2u (81+ 82)b-2

a, = 4x + (u + k 4) C5_+ 8,)

4k 2(81 + 82) b'-2
% = 4u -I'-(u + k') (81 + 82)

(2.265)

The first equation (2.252) serves for obtaining the constant Ca_ entering

in the coefficient do given by (2.249). We do not require this constant, and

shall not determine it. Finally, the system (2.259) yields the unknown

coefficients a-n, a,+_ (n = l, 2, 3.... ) :

a-_ = _ (n + 2)(k _"-- I)k2_+28_82 + (8_ -- 8_) b-c,+2_ --

--[(1 + I k'n+') 8,8,+ n_2(,, + 8,)] b',}

an+2 = _ ( 1 -- k_) (n + 2) n8_82 --[--

c8,+ + o + +

(2.266)

where

16 r_ck 2n 2(n+ I)+ n/#_ [__ +1_

(2.267)

The problem stated has thus been completely solved. All the coefficients

of the functiong(t), defined by (2.240), are given by (2.263), (2.265), and

(2.266), while %, % and a 1are given by(2.264), (2.265), and(2.263),

respectively. The functions q_°(z), _°(z)((2,253)),%(z), _0(z)((2.254)), andqh(z),
_&(z) ((2.242))are thus determined.

Writing k= l, we obtain the solution for the case of a thin stiffening rib

along the edge of a circular plate.
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§ 12. AXISYMMETRICAL BENDING OF A

SIMPLY-SUPPORTED CIRCULAR PLATE

WITH A STIFFENING RIB

The solution obtained in the preceding section is considerably simplified

in the particular case of axisymmetrical bending. For an arbitrary
axisymmetrical load (Figure 11) we have in this case on F,

_- (_r°)r o-k (2.268)

hence all coefficients b_ in (2.247) vanish except

1 (dw°) (2.269)b-I =--T -_ r

q[r)

........
L 2R, " |

FIGURE 11.

Thus, by (2.263)

ai =-- _- 2(1 + v) + 8L lli(l --v) -b(l+-v)] -d7 r

" _,(l--v) (dwO) "ai =--T2(l-t-v)-bSL[k*(!--v) _(l_v)] -_- r

(2.270

All the remaining coefficients an and a'0 vanish. Expressions (2.242) and
(2.254) reduce, respectively, to

_a(z) = h2(1--V)l+_,+(l+ V)a_ ' **(z)= O,

kl(l --v) z 2ai ..__,_o(z)= _al_-, *o(Z)=

The corresponding additional deflections are [cf. (2.142)]

w_ = 2 Re [z% (z) -I- Xk (z)] (k = O. 1), ( 2.2 71

Using the condition of arbitrariness (2.174), we find

dw 0 ,

wl -_- [ll (ri _) _,l (_l, k) Rl (--_-)r-_- C ,
(2.272)
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where,

• 2(1 --v)/ r_ \ r /
It,otr)=_-_-/l--_)--41nR; for RKrKR,

/(.)( . )pu(r,k)= --l+v- 1 -F2 I --2Ink '

for O_ r<R

(2.273)

and

M(61, k) = k 61(I +v)
4 2 ( l + v) + 8_ {k_(1 -- v) +( ! +v)l" (2.274)

The arbitrary constant C" is determined from the condition that the

deflections w' vanish on the supporting contour.

Thus, irrespective of the specific form of the axisymmetrical load on

the plate, the additional deflections (except for the constantC'), and hence

also the additional bending moments in the plate, due to the rib, are always

:)proportional toRl _ r" We can therefore calculate once for all the

functions I_l(r, k) and _.1(8t, k) for any case of axisymmetrical bending. The

factorRl(-d-r_)rin(2.272), is determined in eachcaseas a function of the

plate size and the load, by the formulas for a nonreinforced circular plate

/9, 75, 1361.

The functions _h(r, k) and _.L(6,. k) are given in Tables 1 and 2 for v = 0.3.

Since X_and _tLare always positive, the additional deflections w_ have the

same sign as & r"

Similarly, in order to determine the influence of the stiffening rib on the

bending moments M, and M e, we obtain the additional moments M_k and M_

from (1.19) and (2.272):

M' 4D(I--v) (.dw_°_ "X,'(! R_For (R Kr_Rl): ,o= -R_ \ dr ]r r2 ] ' (2.275)

&:,o\ :
M_o= 4D(I--V)R, (_r-)r'_,,.(i'-t- _-J"R_ (2.276)

4D[dw°_ " [ !kWJ.,v ] (2.277)For :<R: MJ,=M_,=-_/rjr.S,. (l--v)-l- •

The additional moments M}0 and M_o are thus found for R -._r < R_ by
/ l_gx

multiplying the functions(l--_)and(l+?- _} by £,(cf. Table 2)andby

4o(,-,) ('/ whichdepend"--'onthedimensions""" ofthegivenplateandon
Rl _/-37r

the load.

The additional bending moments in the central region 0 ,_ r _ R are

constant, being given by (2.277).

Obviously, for k = 0 (rib reduced to a point) we obtain w _ = C* = 0, since
d_

then (-d_-)r = O.
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TABLE 1

,/R,
0.2 I 0.4 I 0.6 o.e ] 1.o

pd,',k)

0 9.515 6.742 5,120 3.969 3.077
0.2 7.472 6.199 4,855 3.804 2.954
O. 4 4. 570 4. 570 4. 059 3. 297 2. 585
0.6 2.733 2.733 2.733 2.457 1.969

0.8 1.280 .108.280_._ .280 I1.0 0

TABLE

k

o.,i o.,i o.oi i ,.o
;.dS.k)

0.5
1

2
5

10
oQ

0.00996
0.01655
0.02473
0.03517
O. 04093
0.04895

I
0.01966 I 0.02888 0.03747 0.04514

0.03240 I 0.04697 0.05980 0.07652

0.04794 0.06837 0.08530 0.09848
0.06832 0.09411 0.11464 0,12897
0.07775 0.I0761 0.1'2948 0.14381

0.09207 0.12564 0,14874 0.16250

Equations (2.272) and (2.275) to (2.277) enable us to calculate the
additional deflections and moments, due to the stiffening rib, in a circular

plate subjected to an arbitrary axisymmetrical load. *

q

14 e,), ,-I

FIGURE 12.

P

FIGURE 13.

In particular, if k = I the stiffening rib is located at the edge of the

circular plate. We then obtain from (2.272) the additional deflection as

RtSt

Letting in (2.274) 8t_¢o, we obtain the function _.,(5,,k) for the case when

the center of the plate is formed by an absolutely rigid core of radius R.

The additional deflection =D' is then

l (d0v° / I +- C'. (2.279)= "4 Pa(r'k)R -_ rk'(l --'_-'-[-7(1 -I-v) "}"

* Several problems of the axisymmetrical bending of circular and annular plates with one or two annular

ribs have been solved by Grach/31/ (cf. also § 8 of Chapter IV, and §§ 4, 11 of Chapter Ill).
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We shall consider several examples.

1) Circular plate with concentric rib, subjected to a uniformly

distributed load q= const. (Figure 12). In this case (/136/, Chapter III)

w0 ---- 64 (l _b v) D I (5--]- ----(1-[-_) . (2.280)

Substituting (2.280) in (2.272), withC*=0, we find the additional deflection

qR41k

wl = _1 (r, k) ).1 (51, k) 16 (l + w) D [(l --_ "_) k 2 -- (3 -_ w)].

which, added to the basic deflection(2.280), gives the total deflectionw(r).

For the particular casek=l, when the stiffening rib is located on the plate

edge, the total deflection is

--gi-b- --2 l+_+_,'R_ t 1+_+01 ' (2.281)

2) Circular plate with concentric rib, loaded at the center by a forceP

(Figure 13). The basic deflection _is

1- +2 i, N .

The additional deflection wl is determined from (2.272) with C"=0:

, ) PR kwl_l(r,k)_.l(Sl, k) Ink--_ 4_D" (2.283)

Adding (2.283) and (2.282), we find the total deflectionw(r). If the

stiffening rib rests on a support (k=l), the total deflection of the plate is

w=_ 1-- 1 +v+61 "_ --In . (2.284)

q

FIGURE 14.

74



3) Uniformly loaded circular plate with reinforced edge. The plate is

supported at the center and reinforced by a thin ring along the contour r = R,

(Figure 14). The basic deflection w 0 for a nonstiffened plate is

o qR4 [4(l+v)3+v R2r2 I r' rz r ] (2.285)

In this case the constant C* in (2.272) is determined from the condition

w1=0 at r _0:

--R161 (dw °)C*-- 2(1+v-t-61) _-r ; (2.286)

the additional deflection w* is

qR_ 6, r2

wl=-- 16D(l +v)(1 +v-_-6,) "R-T" (2.287)

Adding the basic deflection (2.285) to the additional deflection (2.287), we

obtain the total deflection for the reinforced plate:

_=_ _ _z_"_-,+ 4(1+_+8,) " • (2.288)

Figure 15 shows the maximum deflection of the plate edge r=R, as a function

of 6,, which characterizes the rigidity of the reinforcing ring. The

calculations were performed for v=0.3.

It is seen from this figure that the reinforcing ring has a considerable

influence on the rigidity of the plate. A relatively thin ring made of the

same material as the plate, for which 81=2.7, reduces the maximum

deflections of the plate by 34 %.

4) Circular plate with concentric rib, subjected to aload distributed

along a circle (Figure 16). The basic deflection for the plate without rib is

l(
for 0_r_Q, w°=_-_[_(_-_

r2 \ R 1/

+--_, ),n-vJ.
(2.289)

for Q,_r<RI, w°=_ _ (3 -}- v) -- (l -- u) 1-- --

(2.290)

where P is the total load, distributed uniformly along the circle "=0-

The additional deflection w' is found by substituting (2.289) in (2.272),

with C* = 0 :

w 1------ Ko_1 (r, k), (2.291)
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where

K0-- _k_,°+,[,+(°_ _]8_D _ 1-- R-_ + 21n . (2.292

To obtain the total deflection wwe addw' (2.291) to the basic deflection

w°, given by (2.289) and (2.290) for the different domains of the plate,
and find:

for O._r_<R <o

°=.o__.[_,,-+(;.) (_._._)]TT-; l- +2 I _,_ 21nk ,

for R_,<r < 0

(2.293

.=.,o__o[_,,-+r,_._:__+,._].,++,_+,
for R<o_r_Rz

w=wOK ° [ 2(1 --_')

If Q<R (Figure 17), we determine the additional deflection _ by

substituting (2.290) in (2.272), withe*=0:

(2.294)

(2.295)

rP = -- KS, (r,/0, (2.296)

where

Kx---- 8rid +v l+v
QI_)__(_++.)_2,.+].,2.29+,

r, P

f I L2,_d J_I L - 2p I
I. - ZRt ,_

FIGURE 16. FIGURE 17.

The total deflections of the plate are in this case:

for 0_<r<Q_ R

+=w?--Kl[2(l--'V)(l--l'_21) ( r_l )]l+v +2 1 kmR_I 2Ink ,

for Q<r_R

,_,l_+( _) ( ,. )]w=w°--Kik ]-.__._ I-- +2 1 k2--Rl2 21nk ,

(2.298)

75



for Q_R_r_R_

(2.300)

P

FIGURE 18.

We can, from (2.293) to (2.295) and (2.298) to(2.300), determine the

deflections for some particular cases. Thus, forRL-Rl, i.e., k=l, we find

from (2.298) and (2.299) the deflections of a plate, supported on its

reinforcing rib and subjected to a load distributed along a circle (Figure 18):

For 0_:r _: Q w = --_-_6- 1-- X

[ ¼]o 
for Q_r<R

vR_{

r_ In-_-} (2.301)

2(l+v+_) (3+_+8_)+(_+v-l)_T 1--_-2-

e'+r' In _-} "R_ (2.302)

P

5) Circular plate loaded by the normal pressure q=_-_ acting on the

region r<Q.

The basic deflection g,_ of a nonreinforced hinged circular plate (r _ RI) is

in this case (/76/, p. 266):

wo=__L_vii 2_

r 4 5 }

(g' -_- 2r=) In _}_ _ (Rl2 _ r 2) v 2

(r > e)

(v--1) Q2 (1 r s ln-_- +
(2.303)

77



Hence, on F, i.e., forr=R:

v,=R, -aT-/r=._ _ R_, 2 _7-

-t "'14R In +RI

[4
+ _+,, R_ --7--'_,_ -9-

TABLE 3

Load scheme Deflections

(2.304)

w=w° (r<Q)

w=w° (r_o)

w=w°+lhdr, k)_q(Ol, k)¥_ (r<Q)

w=w°-_-_ll(r, k)_,l(_l, k)y 2 (Q_'r<R)

w=w°+l_lo(rl )_l(61, k)y 2 (r>R)

w=w°+lhl(r, k)_q(61, k)Vl r<R

w_-w°-}-P, lo(r)_,l(81, k)y I R <r <Q

w=w°+l_lo(r)_q(Ol, k)'ll r>Q

The deflections of a circular plate reinforced by a concentric rib,

calculated by (2.303), (2.304), (2.273), and(2.274), are given in Table 3.

The coefficients I_11, I_i0 and _ are given in Tables 1 and 2.

§ 13. SECOND BASIC PROBLEM OF CIRCULAR

PLATE WITH CONCENTRIC STIFFENING RIB.

EXAMPLE

Let us solve the second basic problem, when wo(s) and _- are given on

the contourL(r=R_). Boundary condition (2.143) must then be replaced by

(2.1 60); this is equivalent to writing x=--lin the results of §11.

This substitution yields:

no=O, ax=- 2 + (l__k_)6x ' b-t

a_= 4 + (l -- k,) (8, + 8,)' 4 + (_ -- k,) (6, + _)

(2.305)
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81b-I 2(81 -I- 8_) b-2

at= 2_1_(i_k2)61 , a:= 4_{_(i_k4)(81_82 )

a.-n = _-_{[ (n -i- 2) (l -- k2) k2"+28_82-l-2 (81--8_) I b-,.+2 ,-

-- [,l -- k2"+') 8182 -F -_+ 2 (81 -I- 82)] b_1

2 rr2 8
a.+s = _ 1[ _- ( ' + 8,) -- kso(1 -- k s) (n + 2) n5_8_ +

+ o - - o - ks)8,8 +

+ _ (8,-- 82) b.

(2.305)

where

A_ = n (n + _j [ n _n + 2) n + 2 nk2"\_ + 1 -- k _}j +

+282 _-6(.T_ ._2 -'_" -l+ks +

+ 8,82 {(l + k4.+ _) -- k2- [ i + k 4 + (n + 2) n (1 -- k2)S]}.

(2,306)

The coefficients (2.305) define completely the functions ¢p°'(z), _J°(z) ((2.253)),

%(z), %(z) ((2.254)), and _ (z). _,(z) ((2.242)). In order to determine the

additional deflections _ of the plate by (2.142), we must calculate the
functions

x,(z) = _,,(z)dz + C;, (k= OJ), (2.307)

where C_ are real constants, determined from the following conditions:

_v_=O for r=Ri }w l=w_ for r=R " t2.308)

FIGURE 19.

Example. Consider the bending of a circular plate, due to the

moment M (Figure 19) created by transverse forces distributed along the

contour F (r=R) according to the law

M
P ----n--R-_-cos O. (2.309)
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In the absence of a stiffening rib,

, RI

r3 2_-i In_ + a_, -7] 0

the deflection of the plate is

2.310)

where

b_= (I- k')' a'_, k' a'i= I-- kS 12k' ' = -2- '

J
b'! I ks -F2lnk. a; k'-- 2

2.311)

For the given case we find [see (1.74)I:

Substituting (2.311) in (2.312), we obtain the expansion coefficients of

(2.247):

So= -- 3--_ [(I-- k')(2-- k')+ 21nkI
• (2.313)

M
b_2=_ 6-_(l--k'), , ha=0 (n=_-l, 2. 4-3. +4 ....)

Hence, (2.305) becomes

G 0.-_ a I _ a I _ O, a n = O.

16_D

(n=--I,--2, -;-3, +4 .... )

k'(I-- k')'(,5,+
4 + (l -- k') (8, -F/50

M (l-- k'),(8,-- _)
ao=-- "32aD " "4+(l--k 4)(8,+

M (I-- ks)'(8,+
= -- "32_D " 4 + (1 -- k4) (bl "_-_)

(2.314)

Substitution of (2.314) in (2.254), (2.242), and (2.307) yields:

_o (z) -- - k'a_--_-. xo(z)= a'oz - _ T + c°

2S

(h (z) = ao + as (1 -- k*) _-

x,(z)ffi(a_--ao--2a2)z+ c;

(2.315)
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Substituting (2.315) in (2.142) and taking (2.308) into account, we obtain the

deflections additional to (2.310), due to the stiffening rib:

where

o 16nDA RI cos e

(2.316)

a = 4 + (I -- k.) (8, -k 6.). (2.317)

The solution of the problem is found by adding (2.316) to (2.310). Letting

(6,+62) _,we obtain, in particular, the solution w0 given in / 43,213/ for the

annular part (domainS0) of a plate having a central absolutely rigid core.

In domain S, the deflections have in this case the form w,=Crcos0 , i. e.,

the central disk is rotated as a rigid body.

TABLE 4

6,-}-6=
k

0 I 2 5 I0

0.5 0.1543 0.1403 0.1309 0.1143 0.1029 0.0809
0.6 0.0768 0.0694 0.0642 0.0550 0.0482 0.0350
0.7 0.0318 0.0288 0.0265 0.0224 0.0192 0.0125
O. 8 O. 0093 O. 0085 O.0079 O. 0067 0.0056 O. 0(}32

The angle of rotation of the plane of the elastic stiffening rib is

_*= -- ")-_&--#" r =- rcoso = C'--_,

where

_= 3(l--v)[4n 61--_ _--"(l- k')'-["(I- kz)(3- k') -_ 410 '] . (2.319)

The coefficient G* is given in Table 4 for some values of k and (bl -]-t_)with

v =0.3 .

The data of Table 4 show that the rigidity of the plate at a given load can

be considerably increased by means of a stiffening rib.

§ 14. AXISYMMETRICAL BENDING OF A RIGIDLY

CLAMPED CIRCULAR PLATE WITH STIFFENING RIB

Consider a circular plate, rigidly clamped at the edge and reinforced by

a concentric stiffening rib (Figure 20). The problem of the axisymmetrical
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bending of such a plate is solved with the aid of (2.305) (similarly as in

§ 12) by assuming that all coefficients b_ in (2.247) vanish except for b_,,

given by (2.269). Hence,

8_ dwo

412+(l--k2)SLJ (--_--')r}
k_8, (dw°) "4[2+(I--k_')8_ Y r

(2.320)

"_TS _;Y/_7,7/_///J/////////, _

I. 2_, i

FIGURE 20.

All the remaining coefficients a anda_ vanish. The functions (2.242) and
(2.254) become, respectively,

(I -k,)8, / a_ z .,, 0]

8_ / dw° _ R

(2.321)

We determine the functions _(k(z)from (2.307) and the additional deflection,

due to the stiffening rib, from (2.271). By satisfying (2.308) we obtain

finally:

= p,(r, k) _., (81, k) RI --37- r' (2.322)

where p2(r, k) acquires, respectively, the values

") • iP,o=-- 1--_ --In_-forR_r¢Rl

l--k' r' IP,l 2kS R-T -- In k for 0 _: • _ R

(2.323)

while

kz = k61
2+ (1 -- k_)6, (2.324)

Formulas (2.323) to (2.324) show that the coefficients _2 and)_,, which

depend on the rigidity and the location of the rib, are equal for all cases
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of axisymmetrical loading of a circular plate. They can be calculated once
r The factor

for all for_different values of the parameters 6,,k, _.

dw° ) depends on the type of load, but serves only as scale factor forR1 --_-r.

the additional deflections wt of the plate

(d_)_Obviously, for k=0ork=l, we have _ =0and therefore w t=0.

As in § 12, we obtain simple expressions for the additional bending

moments in the plate:

M' _ A_' t.zD(l --kZ)(l+v) /din°\ _ _ I

, X_D d# R_
(2.325)

The coefficients _2 and X2 in (2.322) are always positive. The additional

deflection w I and the moments M,_, M]I (2.325) have therefore the same sign

as while the moment ,14_ has the opposite sign.
r J

Consider the following examples.

1) Rigidly clamped plate subjected to a central force P (Figure 21). We
have

+5R-rlnw]]
_ = l-i6-nD 1 '¢ r2 •

4PR_k
wt = iu_gt 1-i-6-_- Ink

The total deflection is for r<_R

w=16--_L\ _ +2_-t_ln_ 2+(I--k')6, \ 2k2 Ri2 +Ink , (2.326)

for r_R

_'R,2 { r" r' r 4k ,,nk2+ (I --k')b_ _ 1-- . (2.327)

2) Rigidly clamped plate subjected to a uniformly distributed load q =

= const. (Figure 22,a). In this case

qR_ (1 r" _"
="= - j ,

qR_
w, ------l-W_k (I - ks) _Xt.
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FIGURE 21.

I( f.O 08 O# 0.4 0.2 0 K tO 0.8 05 O.Z_ 0,2 0
c d

FIGURE 22.

Adding these two expressions, we obtain the total deflection of the

reinforced plate:

for r ._<R

(2.328)

for ">R

qR'I(, ,,v 4k_o- k_ (2.329)
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Thegivencaseof loadingwasstudiedin/210/ from whichFigure22,b-d
hasbeenreproduced.Figure22,bshowstherelativedecreaseof the
maximumdeflections,

Wm_ 4k_(1 -- k')

a _woma x_ _l-i 2+(l--ks)61
Ink

R for three values of the
as a function of the rib-location_ parameter k _,

relative rigidity d. =k_= R----_-. Each value of 8. corresponds to an optimum

value of k, i.e., a position of the rib at which the deflections of the plate
are minimum.

Figures 22,c and d show, as functions of the parameters k and b.,

respectively, the absolute values of the ratios of the maximum normal

stresses (%)max and (as)ma x in a reinforced plate, to the maximum stresses

(a_ma. and (cr_)m8x in a nonreinforced plate of the same dimensions, under
the same load. These ratios are

_'-gf [

=_a'_=_l I _' _=_ "

I 8 fl:

Figure 22,c shows (a,)ma x either for • =Rl(full line) or for r =R, when

approaching the rib from the inside (broken line). The values (a0)ma x in
Figure 22,d are attained either outside the rib (full line), or at •--..--_0 (broken

line).

3) Circular plate loaded uniformly along circle ,={_.

The basic deflection wo of the nonreinforced plate with rigidly clamped

edge is, respectively'.

o0 ,,_
(2.33o)

w_ = 8=D [ 2 _, + (R_l-- r9 -- (r' + q9 In (r > O.

Onr, i.e., for•---=R,

] (2.331)

The deflections of a circular plate, rigidly clamped along the edge and

reinforced by a concentric thin rib, as obtaiaed from (2.330), (2.331), and

(2.322) to (2.324), are given in Table 5.
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TABLE 5.

Load schcme Deflections

• I P

L e_, -I

] "= 2R, _' ]

w=wO+lt_l(r, kp.2(St, k)_ 4, (r<O

w=wo_Hx21(r, k)_j(_l ' k)¥4 ' (_r_R)

w=wO_Ha20(r)k2(Si, k)y4, (r>R)

w=wl°+_t21(r, k)X_(6 L k)_'3, (r<l_)

te=w_+la_o(rp.2(St, k)ys, (RgrgO

w=t_°+_2o(r)_._(O,, k)_3, (r>O

§ 15. FIRST BASIC PROBLEM FOR AN

ELLIPTIC PLATE WITH CENTRAL CIRCULAR

STIFFENING RIB. SECOND BASIC PROBLEM.

EXAMPLE

Consider an arbitrarily loaded elliptic plate with central circular rib of

radius R(Figure 23). We determine the additional stresses, due to the

stiffening rib, by representing the unknown single-valued function g(/)

defined by (2.151), on F(r = R) in the form (2.240):

g(t) = an-_ , (2.332)

where a n are unknown complex constants.

By satisfying the boundary conditions (2.148) to (2.150) onE, we find

the functions _°(z), ,°(z) and opt(z), _2_(z)(i=O,l) in the form (2.251), (2.254),

(2.242), respectively.

--It

FIGURE 23.
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In order to substitute in (2.147) %(z) and_0(z) given by (2.254), we obtain
from (2.258), (2.261), (2.264):

where

% (z)= P._ + _._- , 4o(Z)= p;+ p._ + _: .
n=l

P'o= ._ v. = - a_., v_= a- + (2 -.)%_.; p' = "__.[ l +

9(_+ ,_ 2('

(.+:)+......; ....,
_, = 2b_,--a,[ l -F -_-

(n= 2, 3, 4...)
A C

(2.333)

(2.334)

On the external contour L of the elliptic plate, whose semiaxes are a andb,
we have

• =R, a- , _ Rl ma , (2.355

where

r, a+b a--b (2.336
ale', .,,=---_--. m =a +----_"

Inserting (2.333) and (2.174) into (2.147), we obtain onL:

With the aid of (2.335), we calculate

7" " _ '(_-)=_e(,,n).', (_-)-"= e,('-,,n--,)_ l

(2.338

where

k+.

g(k, n)= nhl"m_ R,
k+. tn-k I" n=_-
--_-.--y-.

(2.339)
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(_), 12339,_-. ,-. -4.+i} cont'd

re(k..)- (- l)'rm-_-.

(_),_,
The coefficients g(n. k) and g,(n. k) are meaningful only when the numbers

n-_-k and n--k are even.

In order to obtain an approximate solution of the problem, we retain only

a finite number of terms in (2.332) and (2.247):

g(t) ,- a,_, (2. 340)

R,,,._2_ ,on____..
,-..4,+I_

(2.341)

We then have, according to (2.334), instead of (2.333):

R"
%(')" P-_R+ "_._-

e

n_O n_l

(2.342)

The boundary condition (2.337) becomes

+ +(,.+,z)-0.
+

(2.343)

Substituting (2.338) in (2.343) and rearranging, we obtain

-- _ _.g(k.n)._- _I,(k-1. n-l)a_+

.+l

+ Y. ,_l_+,(n+l)glk--l.n)_-J+
h--l.-.n

"I" _" mln + l)_.+ig(k + l, n)ll_-*-l- _ l_2(k, n)_r-_-l-
/_P-.l--,,s &..-a

+Z' _,(k-1. ,,-z)o_- )_ (.-1)v._,._,(k-_..-m.-'-
&==el /t_n+l

--_-.--'_m(.--l)¥._,,Ig,(k.n-- 11.-"}+ II;+ll,.l(a-'+ =a)= 0. (2.344)
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Equating to zero the coefficient of the free term in (2.344), we obtain

- _ _.,e(0. n)+ E _(n+l)ie(-l.,)+
am& 4,0 .... am.l, 3 _,..'

+meO, n)lP_+,+ _ e(0, n)P_+¢ofO.
rim|, 4. 6...

(2.345)

Equating the coefficients of o*, we obtain fork m 4-!:

_ _ _(-l..)+ _ _(.+l)lg(0..)+
n--I. _l, 5 .... _9. 4.6....

+mg(2, nlIP.+, +P,_+ _ I$1i, n)l_, +
nml. 3. 6, ...

-{-g,(O. n--i)y_l-- _ mrlgl(l, n-- I),/,_,(n_ l)ffi0,
nl_. 4. _ • . •

- I_ _(], n)l_n+ _ (,,+ l),_[g(--Z n)+
am,I, $, 6,... rim& 4.6 ....

"k mg (0, n)l Pn+l + _ £ 1-- I. n) p_--
n_lo & _...

-- _ _¢,(0. n-- I)L+m,_,=O
a _l.& 0,...

From (2.339) follow the equalities

(2.346/

g(--k, n) ffiffiO, g(k. n) fffi0for k)n}lh(k, a)-- 0 for a (n ' (2.347)

Equating to zero the coefficients of o*(k =, 4-2. 4-3 ..... 4-r) in(2.344), we obtain

{--_._e(--k. n) + [e(k-- I. n-- I) + meP + I, n-- I)I'_L+
amt

+e(k, n)¢'.+e,(k-- I. n-- l)v,_--le, (a--2, n) +

+ me_(k,n)ln_¥.),=0 '" (2.348)

_. {-- p',,ug(k, n)-- ug.(h--l, n-- l)_'.+g(--h, n)p_,+
Am|

+[g(-k--l, n--I)+mg(-k+ i, n-i)]n¢j =0

We have thus obtained the (!-4-2r) linear algebraic equations (2.345), (2.346),

and (2.348). If we add to these the single-valuedness condition (2.246) for

the function P (/), and an equal number of equations obtained for the

conjugate magnitudes, we obtain (4r 4-4) equations altogether.

These equations contain (91-Jr 3) coefficients a..,, .... ee. at ..... a,, Ima L, a_,

and (_z-4-l) conjugate coefficients _ ..... a'0. a_..... a,, e_(a I and lm at are

real), i.e., (4r 4-4) unknowns altogether.

The number of equations is thus equal to the number of unknowns. By

solving system (2.345), (2.346), (2.348) we obtain all coefficients of

89



thefunctiong(t),definedby(2.340),throughwhichthecoefficientsof the
functions%(z),_0(z)((2.342))and_l(z),_,(z)((2.242))arealsoexpressed.

Anapproximatesolutionof theproblemis thusobtained.
0_

To solve the second basic problem, in which w0(s ) and -_- are given on

the contourL, the boundary condition (2.147) must be replaced by (2.160);

this is equivalent to setting _=--lin (2.337), (2.343) to (2.348).

Exam p le. An elliptic plate, rigidly clamped along the contour, is

reinforced by a central circular stiffening rib of radius R and is subjected

to a uniformly distributed load q.
The basic deflection of a nonreinforced plate is (]136/, p. 279)

--a-f --_] , (2.349)

where

_r2'_---.-_--{ 24 24 16 '_--!__-+ _-+,,,_,/ , (2.350)

a and b are the semiaxes of the plate.

We find
3

.-3
(2.351)

where

(2.352)

If we retain only six terms (r=3} in the expansion (2.340) of the unknown

functiong(t), we obtain from (2.345) to (2.348) and (2.246) a system of eight

equations, from which we find the real coefficients a_ 3, a_ 2, a_ l, %, aI ,a s, as

and _'0" (These equations are not given here since they are very involved.)

In addition Imal = 0 in the case considered.

§ 16. ANOTHER FORM OF THE BOUNDARY

CONDITIONS

The boundary conditions (2.148) to (2.150) at the junction between plate

and stiffening rib can also be written in a different form, which is

convenient for solving many problems (cf. Chapter VI).
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Let uswrite (2.42)in theform

c. A.= _t to,, +'_)J (2.353)

Separating the real and imaginary parts and using (2.1 6), we obtain

f l &v, q Oho,'_ A,(._ Ow, O".w,_L,,=C,_-_--_- -&_O_sJ' L,,= an _1" (2.354)

Substituting (2.354) in (2.19) and then in the first equation (2.11), we find

A,,(l o',,,,, 0",,,._ Orc(_ o,,,.+o._1 |""(') = Q--,to--."o,--r---_) -_L "_-_ o,,os)l
o [O rA I o_, _,

P'(s)=_-_E[ '(o, 0,, "_-)]+ •

+ e_,_OnOs e_, Os ]J

(2.355)

We have, in addition, by (2.4) and (2. 5):

0w0 0w,
w0=_ k, _-=-_-onv,. (2.356)

The left-hand sides of (2.355) are also expressed through the functions w0
and wk which determine the deflections of the plate at the ribyk. In fact,

according to (2.3), the functions mk(s ) and pk(s) represent the jump (across

Yk) in the bending moments m_(s), mkk(s), and in the generalized shearing

forces p_(s),p_($} ; these again are expressed through the deflections w0 and
w_ by (1.57), in which wmust be replaced by w0 andw_, respectively.

Formulas (2.355) and (2.356) represent the conditions at the junction

between the plate and the stiffening rib or, which is the same, between the

domains S Oand S_ of the plate. These conditions contain no additional

unknown functions or constants and are expressed only through the unknown

deflections w0 and w, and their derivatives, and also through the known

rigidities A, and C, of the rib. It is assumed that the flexural rigidities of

the various domains 8k(k=l, 2..... l) differ, being, respectively, equal toDk.

Thus, when Yk is a circle of radius Qk= R, the boundary conditions (2.355)

to (2.356), represented in a polar system of coordinates (r, 0) with origin

( o)at the center of the circle Yk _ are for r--R

0_, O_, O_ o 0_,
(61+ v,- X,vo)_ + R 0-_----X,R _--620r- _ +

O'_s, R
+_--(6, -l-6_ -}-vs-- %,%) _ = -- mo(O)_-_k, (2.357)

Ow, 0_, O'wo
(] --_'k) -a;-- R Wr + R_,_

-- I_ + % -- s + _,, (3 -- %)1_" _ -- R __ +
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+_'*R* _ -I- [61 --F8, -- 2 + v, + _, (2 -- v_)]_ -t-

bl 01% R"
+ _--_- = --no(O) _,

_, _o
wj--%, -_;- = _;-,

(2.357)

where

A, C_ Do
6, = ]_-B_',' 6_ = _--b:',' _., = D-;, '

p0(O) and m0(8) are given external transverse forces and moments applied to

the rib; vhis Poisson's ratio for the material in domainSk.

If the flexural rigidity of the plate is uniform, i.e., X=l andv0----v ,, the

boundary conditions are simplified:

_, 0' 6, + 62 0%, 0"_w,
6t -_- --_R _ (w, -- wo) -J- _ 08a 62 _ = -- too(0)__

0'w, o_vo 62 a_, a3
--R_i-+R _ -/ ao, --!_ _(wk-wo)+

(2.35C)

+ (6, 0"_, _, a_w, R2
+ 6,) _ + R-. -a_r = -- po (O)-z)_

w,:w o, -_-=--_/-

If the rib is located at the edge of a circular plate, i.e., vo=Do=0, or

).,=0, (2.357) becomes

8% 8_, fit + 62 + % _'%
(6j + v,)-_- + R -_- + R o_'

8_e.,,.

0% __ R 0'% 1 (6_ + _w k 0_,"-_ Or' R % -- 3) _ -- R=_ +

6,
= -- Po (O)-_+ (6, + 6_ + v,-- 2) 0_F + _-.-_-

(2.359)

When the stiffening rib is located at the edge of a circular hole in the

plate, /),= 0 and (2.357) becomes

tO' "0°_° _ O'_Wo I . , O_Wo
,-- vd-_--- _ _;rr, + _-(6, + 6_--%) _---

• Oawo

-- 6_.-_--_ .= mo (O)D_

O_o O_n I , O'_o R_ o_°oPo
-- "-'_- + R "_--- _-" (62 + 3 -- v°) -a_" -{- OP +

a'_,o 6; o_ o
+ (6; + 6', + 2 -- _'o)_ + _-'-_r = Po(e)

(2.360)
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where

Ck¥, = , 6_= YD-/_" (2.361)

The positive directions of moo ) and P0(e) coincide here with the positive

directions of ?,4, and Q, on the inner contour of the plate.

If the reinforcing rib forms a support along which the deflections vanish,

0w, a_ /_wk
i. e., w, = -_-=--_r = _-= 0, the second boundary condition (2.355) is

replaced by wh = 0, while the first becomes

Ah awk - _k

,,,, (s)= _. -_ -- c, 0-_r. (2.362)

It is interesting to note that the support moment and the angle of rotation

of the plate edge are directly proportional only in the case of axisymmetrical

loading of the circular plate.

Conditions (2.356) remain unaltered.

In this case the second equation (2.355) serves for determining the

unknown support reactions along ¥k; if these reactions are denoted by Nk(S),
we obtain

Os [Ak 0_, \ C* O_a (2.363)

For a circular supporting rib (2.359) and (2.360) become:

1) Outer supporting rib:

(5,-bv) -b R 0-_-..--0:Or-_ = -- m0 (0). , w=O (2.364)

2) Inner supporting rib:

Ow O_ ., 03_ =mo(O) R__, w=O,(6;
u0

(2.365)

where the subscripts of w and v have been omitted.

In the case of axisymmetrical bending of a circular or annular plate

with reinforced edge we have w = w(r). Boundary conditions (2.359) and

(2.360) are then considerably simplified.

3) For an outer reinforced plate edge r--- R,

dw d_ R

dw n dmW ,,:d_ R' l"

_----̂ _-_--_ -_ =-- poNj

(2.366)
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4) For an inner reinforced edge • = R of an annular plate

R t
dr 2 = mo Doo

dw "F R d'_ . d_ou R_ "--dr -g_ + _'-3-_ "=P°_,

(2.367)

5) For a plate reinforced by a concentric circular rib of radius R [not

at the edge], we obtain from (2.357):

dw_ d_ R
(v, _ X_Vo+ 83-_r + R _ (w, -- XlwO)= -- mo D_,

dwl dwo
w, = Wo, --_ = -'aT

). . dwl R d_x - d_Vo

d s R'

-- R'd'-_ (wl -- )qWo) = -- Po -_1

(2.368)

where subscript "l '_ corresponds tor4 R, and subscript"0" tor> R;

_,l = Do/Dl.

If the stiffening rib forms a support, the second condition (2.366) and the

last condition (2.368) are replaced by w = O.
The boundary conditions introduced in this section will be used frequently

in the following chapters.

§ 17. DYNAMICAL BOUNDARY CONDITIONS

In dynamical problems of motion of thin plates reinforced by ribs, the

boundary conditions (2.355) and (2.356) remain in force, but to the external

forces p,(s} and moments mk(s ) acting on the rib we must add, in accordance

with d'Alembert's principle, the inertia loads

-- p.Fw;, -- IS./,8;,, ( 2.369)

where p is the density of the rib material; F is the cross-sectional area of

the rib, 8_,=_ is the angle of rotation of the rib section about the tangent

_. i11, is the moment of inertia of unit length of the rib referred to the axis

passing through the center of bending. The double primes denote the

second partial derivative with respect to time t.
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The dynamical boundary conditions at the junction between the thin plate
and an elastic rib locatcd on it are thus:

- _-_- o-_-)-_ _- +_)]

0{o I (10.. a,_.,_

Q,ko--_+_,_- H, _,=_o, _ =-_-

(2.370)

In the case of free vibrations of the plate we represent the deflection w_
in polar coordinates in the form

wk (r, O, t) = W k (r, 8) cos (pt -{- q_o). (2.371)

When the axial line of the rib forms a circle of radius P._,=R, (2.370) becomes,
by analogy with (2. 357), for • = R

aW k 02
(8, + Vk -- Xkvo- %X_) Or--+ R 37_ (W,-- _,Wo)+

1 0 a 03
+ _- (8,+ 8_ + v_ -- _kVo)_-_W k- _ -_W_ = 0

%x_W_+ R (I-- _k)O
a_

-- Wk-- R'_•2"(Wk--X,Wo)+

0' (2.372)
+ _l --_4 Wk -- [b_ -- 3 + vk + _.k(3-- vo)] _W, --

--R _ _---(W_--_kWo) + RIB, + _2-- 2 + v, + ;%(2--vo)1X
Or_

O*
x 0r---;_-W,_= 0

where

_,=Wo, 0 W _ 0
0r *--_-W_ (2.373)

p,l,, p.F

I%Rh,' ( 2.3 7 4)

h_, p_,are, respectively, thickness and density of the plate in S k .
Particular cases of conditions (2.372) and (2.373) for circular and

annular plates with reinforced edges are easily obtained in the same way
as in the preceding section (cf. § 5 of Chapter VI).

In some terms of (2.372) we may replace W 0 by W, and vice versa, by

virtue of (2.373) and the following equalities:

OtWo O_W, O*Wo O_W, 04Wo O_W,
08 = = 00* ' 0r09 a = 0r--;_- ' 00,_ = _ on y_,. ( 2.3 7 5)
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If thestiffeningrib forms a supportalongwhichthedeflectionsvanish,
O_w O_w (2.370) becomes

i. e., w = Os = 0_" = 0}_4-= O,

OWo Ow,
wo=w,=O, _ =-On--

(2.376)

In the first condition (2.376) we may replace wk by w0.
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Chapter III

BENDING OF THIN PLATES WITH

REINFORCED EDGES

§1. STATEMENT OF THE PROBLEM.

BOUNDARY CONDITIONS. DEGREE OF

DETERMINACY OF THE FUNCTIONS

Let the middle plane of an arbitrarily loaded thin plate occupy the

interior or exterior of a simple smooth closed contour r. The plate is

reinforced along F by a thin elastic rib of different material. The rib has
a constant cross section, one of whose principal axes of inertia lies in the

middle plane of the plate (Figure 24).

FIGURE 24.

The additional moments and strains of the plate, due to the reinforcing

rib, are given by the functions _(z) and _(z), which are analytic and single-

valued in the plate domain and satisfy on r the conditions of juncture

between plate and rib.

In § 8 of Chapter II we derived four boundary conditions for the more

general case of a stiffening rib located in the middle plane of the plate.

Two boundary conditions suffice in the particular case considered here:

the condition that the forces and moments of interaction between the thin

rib and the plate be equal, and the condition that the strains in the rib and

plate be equal. The first of these conditions is obviously obtained from

(2.148), by assuming, e.g. , that no load acts on the rib from the side of

So, i.e. , that _+(t) = _'+(t) = _+(t) = 0. The second condition coincides with

(2.150).
We have thus*

-- xq_(t) + top'(t) + _ (t) = -- (_¢+ l) g (t), (3.1)

q_(t) -I- tq_' (t) + _ (t) = P (t) -- R (t), (3.2)

* If the plate occupies the region outside r, the sign of the tight-hand side of (3.1) is inverted.
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where [cf. (2.151)to(2.153)]:

1
g (t) = glY lied + c, -- 1({)1 =

s sl

0 o

Ow° 1 _
R (t) = 07- -- _F os

(3.3)

Here l(t) is an unknown function de_ending on the unknown moments and

forces with which the plate acts on the rib along F, and is given by (2.25);

w°=w°(x, y) is the basic deflection, assumed to be known, of the same plate

without stiffening rib, under the same load.

In view of the arbitrariness in determining the functions ¢p(z), _(z), and

X(z) = S*(z)dz and of the considerations in § 9 of Chapter II, we conclude that

under the specified stresses in a finite plate we can assume [cf. (2.174) and
(2.175)] that

Cs=--V_. C,=--C,--iV°_. ¢p(z0)=X(z0)=O. (3.4)

where z0 is any point in S0 We can replace the condition _(z0)=O in (3.4) by
, (Zo) = o.

Conditions (3.4) eliminate completely the indeterminacy in the functions
giving the solution of the problem stated.

If the deflections of the plate are specified in addition to the stresses,

then, by analogy with (2.180) and (2.181), we can eliminate theindeterminacv

in the functions introduced by writing

C, = -- V ° , C, = -- C, -- iV_-[o, Im [Z (z0)l = O. (3.5)

We can use (3.4) or (3.5) to express the unknown function P(t) in (3.3) through
the unknown function g(t)[cf. (2.182)J:

$

1 ,% (3.6)

The uniqueness theorem is proved in the case considered exactly as in § 5
of Chapter II.

We note only one particular case, which will be useful to us in the next

section: if the contour F of a nonreinforced plate undergoes only a rigid-
body displacement, i.e. ,

0w 0
0_ = v = conston F, (3.7)
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the stresses in the plate are not affected by the insertion of an elastic rib.

In fact, we find by direct substitution that the boundary conditions (3.1) to
(3.2) are satisfied if we assume that the additional state of stress of the

plate, due to the stiffening rib, vanishes identically:

(p(z) = a, = const, _2(z) = _0 = c0nst /- (3.8)

g(t)=O C3=2i(v+a o+_0) !

By virtue of the uniqueness of the solution, we therefore conclude that

(3.8) solves the problem under condition (3.7). In accordance with(2.91),

(2.47), and(2.48), the internal forces and moments in the rib v_nish; by

(2.18), the angles of rotation 0, and 0_ of the rib sections define only a rigid-

body displacement:

0_-- ion = Cst. (3,9)

§ 2, CASE OF FINITE DOMAIN. REDUCTION

OF THE PROBLEM TO FREDHOLM'S INTEGRAL

EQUATION

The problem stated in the preceding section can be reduced to a Fredholm

integral equation of the second kind. We note that the function g(t) in (3.1)

is related with the function P(t) by (3.6), and can be easily expressed through

dP (0 = p,
dt (t) in the form

g (t) = 8_ [(A + C)tP' (t) + (A -- C) "_P' (t)l. (3.10)

Subtracting (3.1) from (3.2) and introducing conjugate magnitudes we obtain

q>(0 = _-_ [P (t) -- R (t)l + g(t). (3.11)

We also find from (3.1):

_(t) = ×q_(t) -- tqf (t) -- (× + 1)g(t). (3.12)

Thus, if the function P(t) and hence also P'(t) are known, it is possible to

obtain from (3.11) and (3.12) the boundary values _0(t) and _p(t) of the functions

_(z) and _p(z), holomorphic in the domain within the simple smooth contour F.

The functions themselves are given by Cauchy's formula [104]:

1 _¢_(t)dt
_(z)=_i J 7----z '

P

1 S ×_({)--i-_'(t)--g(t)(×+ I)_(z) = _ t--z
F

(3.13)

dt. (3.14)

99



We obtain the boundary values of cp(z)and _(z)for z-.),tfrom Sokhotskii's

formulas. Their substitution in (3.1) yields:

P F

x + l--r_,, x+l _g(-t) dt
(3.15)

The second integral on the left side of this equation is easily integrated

by parts; because of the single-valuedness of _(t)on F, we obtain

2n-_, _ _' (t) dt = 2hi _ (t) d t -- to "
P F

Introducing conjugate magnitudes we can rewrite (3.15) as follows:

+--_-- e(t0)+_7___ ° j=0.
(3.16)

Substituting in (3.16) for qD(t) andg(t) from (3.11) and (3.10), respectively,

we obtain the following singular integral-differential equation:

,,, (to)P' (to_+ b, (to)P' (to)+ _ _ iv; (to,t)P {t) +
r

dt . 1 .I+ r; (to, t) P' (t)] _ + _- [n; (t o, t) _-(0 +

dt
+n_ (to, t) P' (t)]_ = t (to), (3.17)

where

r;(t o, t)

ro(t o, t)= (l--v)2D_(t--t°) d t--to
AC ,it i--_o'

flo(to, t)= (l-- v)(3+ v)D_ (=_)AC 1 +t" , (3.19)

d t--to 3+_ L_ch(t)_, (3.20)14vb-_(t--t°)dt t---to 4 a,(t)+ t--to

t--to -= 3+v t--to=-\
fl;(to, t)=bl(t)_t2--_b,(t)(l +___ot_) -

1-- -- d t--to

¥ va_(t)(t -- to)_ __ to'
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t(to) - (1- ,_)'D' _ R (t)d t-- to_+
_i AC Jr t -- t o

+ (l--v)(3+v)D' f ( dt + dt I
F

(3.21)

Substituting in (3.21) for R(t) from (3.3), and remembering that

I.,-,o 0. I/.,
t--t-_-o = . \t--to _ =0,

r

we can rewrite (3.21) so that it no longer contains the unknown constant C,:

f (to) (1 -- v)_O*("Ow° .t -- to
= ,,iAC j_a_+

F

q (l -- v) (3 + v) D' C0w ° [ dt dt- )_AC J _- _ + _---_0" (3.22)
F

Since the function P(t) is single-valued on F,. we find, integrating by parts:

I P (t) dt (l -- v)"-D"- f t -- top, (t) dr. ( 3.23)_.- r; (t0, t) T:/; = _A-C J t -- to
F F

Similarly,

lai J'_ (t°' t) P(t--"_& = 2 (l--_,)aiAC(3+v)D2ff _7 (t) t-_ln]t--to[dt.
F P

(3.24)

Substituting (3.23) and (3.24) in (3.!7), we obtain

o,(to)P'(,o)+_,(,o>P'(,o)+ _ _r (,o_)P'(,)_ +
F

[o,,o (3.25)

where

F (to, t) = I'_ (to, t) -- (1 -- v)*D = (t -- to)'
AC i-- io

_(t o, t) ==fl; (to, t) -- 2(1 -- v) (3 + v) D' (t -- to)_ In [t-tol

(3.26)

We have thus obtained the singular integral equation (3.25) for determin-

ing the function P'(t); this equation contains, in addition to the unknown

function, also its complex conjugate P'(t).
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Weintroducethenewfunction

Ixo(t)= P' (t) i s (3.27)

and rewrite (3.25) in the form

r

F

where

=§4 ;.r(to.O. ,)= :oi..(to.,).

F(to)= _rot(to). (3.29)

Adding to (3.28) the corresponding equation in complex conjugate magnitudes,

we obtain the following system:

2 2

A_IX=-- A_IXO (to) + _-. K_ (to, t) IX_(t) t --dtto --

_ o (a 1,2), (3.30)- Y_(to) =

where

A;.=A;2=A--C, A_2=A;,=Aq-C I
FO(to) = ACF (to)/D, yo(to) = f_tt_ 1"

_, (t) = _o(t), _, (t) = Ixo(t),

Kn(to, t)= K_ (to, t) AC/ D , K,2 (to, t)=K2(to, t) AC/ D

K,_(to, t) = - K_,(to,t) t_-to _,
t --to

t--to p
K,2 (to, t) = -- Kll(to, t)

In matrix notation (3.30) becomes

where

A_ --: A*_ (to) + _- K (to, t) ix(t) = [o (to),

F

(3.31)

(3.32)

(3.33)

(3.34)

A*= [[A:,I[, K(t0' t)= [IK_(t 0' t)[[

are known matrices on F, satisfying everywhere on F the H_Alder condition

(H), (the matrix K(t o, t)by both variables); f°(to)=([o, fo) is a given vector,
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satisfyingtheH condition everywhere on F:

also satisfying the H condition.

We rewrite (3.34) in the form

p (t) := (_t,, p_) is an unknown vector

A_ :_ A*_ (to) + aT J _ + Ko (to, t) _, (t) dt = p (to),
F F

(3.35)

where

Ko (to, t)= K (to, t)-- B
t--to ' (3.36)

A*= _--C A÷C] B l÷v[[--(A--C) --(A÷C)I l (3.37)+c A-c ' = 2 II A+c A--ClI"

The determinants of the matrices

S=A*÷B, T=A*--B (3.38)

are

det S = det T = -- (1 -- v) (3 ÷ _:)AC 4_ 0.

Equation (3.35) is therefore of the normal type.

The total index of the equation Ap = 0 is

(3.39)

1
×o = _- lln det T -- lndet S]r = O. (3.40)

Consider the characteristic equation corresponding to (3.35):

B _ _ (0dt
M_ _----A'p, (to) + _ j _ = [. (t).

F

(3.41)

This equation reduces [11] to the Hilbert problem

_D+(to) = G(D- (to) + g, (to), (3.42)

whe re

g, (to) = S-'f, (to), G = S-_T. (3.43)

The canonical matrix X (z), corresponding to the homogeneous Hilbert

problem (obtained from (3.42) for g. = 0), is

¢+(t0) = G¢- (to), (3.44)

where G=[]G_IIo According to (3.43), the elements G_are real nonzero

constants. It is easily shown that

det G = -- 1
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everywhereonF. In thiscasethecanonicalsystemof solutionsof the
homogeneousHilbert problem(3.44)is representedbythesystemof vectors
_(z)(k= 1.2)definedby [11/

k =S + /_D(z)=G¥ for zES0

k J (3.45)
q_(z)=¥ for zES-

I 2

In our case ¥=(I,0), y= (0,1)(S- is the region completing S0--bF to a complete

plane). Hence

1 2

(1) (z) = (Gt,, G21), (D(z) = (G12, G22)for z E S +,

I 2

(D(z)=(I,0), (D (z) = (0,1) for zES-.

The canonical matrices are thus

X+= Gn G,, ]=G X-= 1 01 (3.46)G2, G22 ' 0 "

The determinants of these matrices differ everywhere from zero.

The general solution, vanishing at infinity, of the nonhomogeneous Hilbert

problem (3.42) is

dt X (z)G-' _ g, (t) d.t--i-:Y- "
• (z) = _mz.) [X+(t)l-'g* (t) t--z = --2n_----; (3.47)

F

Since all the particular indices of problem (3.42) are equal to zero, a

solution of (3.41) always exists, and contains no arbitrary constants.

Having obtained the solution (3.47), we can find an expression for the

required solution t_(t) of (3.41) in the form ]11]:

where

BoZ P dtl

F (to) = Aof, (to) + -_- 3 f* (hi t--/_-/_to, (3.48)
r

1 1 --(A--c)
A°=2[S-' W T-']=(I--v)(3-}-v)AC AWC A-FC I (3.49)-- (A --C) '

llG11--1 Gx,B0 IX+ X-]
2 2 G2x G2s--I '

(3.50)

Z = [X-I-'T -l =

I --I:--v)(A--C)= 2(I--v)(3 +v)AC --v)(A+C)
(3+v)(AWC)_.

--(3 + v)(A --63 II
(3.51)
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Wereturnnowto (3.35)whosegeneralsolutionis givenby(3.48),with

f , (to) = f° (to) -- _- _ Ko (to, t) p. (t) dt . (3.52)
P

Substituting in (3.48) for [,(to) from (3.52), we obtain a Fredholm integral

equation of the second kind, equivalent to (3.35):

±['K*
I_(to) + _i ,j (to, t)lA(t)dt= F, (to), (3.53)

r

where

ot_ _ a_ BoZ ["P (tl) dr1
F,(to)= Aof ,,o, T -_-.I fi_-_o ' (3.54)

r

K'(to, 0 = IIK;,ll = AoKo(to,t)+ _i S Ko(t''t)dt't,-to (3.55)
r

Fredholm's alternative is applicable to (3.53). Hence, in order to prove

that it can be solved for any right-hand side, it suffices to show that the

corresponding homogeneous equation has no nontrivial solutions.

Consider the homogeneous equation obtained from (3.53) for F,(to) = O, i.e.,

AofO(to)+ 0 /35,)
P

Using designations (3.49) to (3.51), we can rewrite the last equation in
the form

or

ill o [ l +.,, {'p(t)_ =oP(to)+ o -l[ 2_ jt-to •
P

_ + ,_ _ f?(t)dt to "t" I + _ r to (t) dt
f,o(to).--_ j t_t----T=O. _toj---_T j t_t ° =0. (3.57)

F 1"

Solving the system of homogeneous singular integral equations (3.57),
we obtain

_(0 = fo(t)= 0.

According to (3.31) and (3.29) we then also have F(to)= 0 and

f (to) = o.

(3.58)

(3.59)
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By virtueof (3.21),this canbewrittenin theform

l R (t) d -F _ =
2-_- _ 1-_ 2_i _

o (3.60)

This singular integral equation of the first kind gives the solution of the

first basic problem in the theory of bending of thin plates when no load is

applied (cf. (3.16)). This solution is

R (t)= const on F

or, according to (3.3),

Ow0
0-7- = v = const on r (3.61)

Condition (3.61) is thus a consequence of the vanishing of the right-hand

side of (3.53).

Let I_. (t) be any solution of the homogeneous equation corresponding to

(3.53), and let P' (t), g. (t), ¢p.(z), _. (z) be the corresponding values of the functions

P'(t), g(t), q_(z), _(z) defined respectively by(3.27), (3.10), (3.13), (3.14), if

Ix0(t) is replaced by _.(t) in (3.27).

The functions _.(z)and ap. (z)satisfy the boundary conditions (3.1) and (3.2)

under condition (3.56), and thus solve our problem under condition (3.61);

but in this case we have, according to(3.8):

% (z) = % = const, _;. (z) = U_o, g. (t) = O,

and by (3.6) and (3.27)

P, (t) = P: (t) = ft. (t) = 0 on r. (3.62)

The homogeneous equation corresponding to (3.53) thus has no nontrivial

solutions. Hence, (3.53) has always one and only one solution _(t).

Substituting this value of _t(t) in (3.32), we find _0(t) and thence P'(t) from

(3.27).

Knowing P'(t), we determine P(t)by integration, except for an arbitrary

constant, and also the function g(t) from (3.10). We then obtain ¢p(t)from

(3.11), and finally express by (3.13) and (3.14) the functions ¢p(z) and _p(z)

holomorphic in the domain of the plate, which characterize the additional

stresses in the plate, due to the stiffening rib. The problem is thus solved.

Equation (3.53) can be solved by the usual approximative methods ] 3, 48,

69, 79,132].

§ 3. SOME RELATIONSHIPS FOR AN UNBOUNDED

PLATE WITH CURVED HOLE

Let bending moments M__ = const, and M_u_*)= const, act at infinity on

an unbounded plate having a hole whose contour is F. The deflections w of
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sucha platesatisfythebiharmonicequation,andthereforethesum

is a harmonicfunction.
Chapter1, §8):

Mxq-Mu = -- D(l q- v) Aw (3.63)

The sum (3.63) satisfies Green's identity (/39/,

d(M_dn+Mu) dsq- ffd(M,,q-- Mu)dS=O, (3.64)
P. Y,

where F, is an arbitrary smooth closed contour surrounding F, and F, is a
d

circle of infinite radius (Figure 25); d-n is the derivative along tiae normal

n to the corresponding contour.

d (Mx--bMv)=O at infinity, (3.64) reduces toSince in our case _fi

f d(M'+'_w) as=O. (3.65)• dn
r,

We introduce polar coordinates (Q,e):

z = x + @= o (_)= o (Qei'),

where c0(X) is a function mapping conformally the exterior of F. onto the

exterior of the unit circle Y(O= 1) on the plane [ = 0g e. Since the mapping

is conformal, we have

dn ds (3.66)
dQ = d_"

FIGURE 25.

In addition, we obtain from the first invariant of the stress tensor

M_ q- Mw = Mo-}- M , = M. q- M_ (3.67)
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onr,. Using(3.66)and(3.67),werewrite (3.65)in theform

2_

F, 0

where

2_

(M + M,)dO = C = const,
(3.68)

i.e., (3.66) is constant for allvalues of Q. The constant C is found by

evaluating (3.68) for a circle of infinite radius, where

whence

c = 2_(M__'+ M_). (3.69)

Substituting (3.69) in(3.68), we find

2_

0

(3.70)

This shows that the mean value of the sum of the bending moments

(M +M0r" on any circle in the plane g is equal to the sum of the bending
moments at infinity M_=_-L aa(=_

A similar result was obtained by Brock /201/ in the two-dimensional

problem of the theory of elasticity.

If the plate is reinforced along F, by a thin rib, we obtain from (3.70)

2_

J'(M:+MT_d_= 34,:,+M':,. (3.71)
o

In the absence of a stiffening rib we have, according to(3.70), for the

same contour F.

2_

.J'(Ma+ a4v_d0= M'z'+M__',
0

(3.72)

where M ° M°_ are the bending moments on P,, corresponding to the basic

state of stress of the plate without rib.

Equating (3.71) with (3.72), we find

2_ gn

2-_j' (M2 --M °)dO
o 0

(3.73)

108



i.e., therespectiveincrementsaveragedover ¥,ofthebendingmoments
M and M, on F. (in domain S-), due to the stiffening rib, are equal in

magnitude and opposite in sign.

If we now assume that F. delimits the hole in the plate (F. = F), then

M°=0onF., and by(3.72),

2_

0

(3.74)

i.e., the mean value on _ of the circumferential bending moments is equal

to the sum of the bending moments M_") and M__), acting on the plate at

infinity.

Hence, for pure torsion of the plate (M_=--M(u_I), we have

2-_ M,dO =0.

o

(3.75)

i. e., the mean value on 7 of the circumferential bending moment M, is zero
in a plate under torsion, having a hole of arbitrary shape.

If the plate is subjected to bending by moments M_x"_, only (M C=_=0),g

it follows from (3.74) that

2_

1 _M_
0

dO = I, (3.76)

i.e., in this case the mean value on ¥ of the coefficient of stress concentra-

tion is unity in a plate having a hole of arbitrary shape.

Equations (3.71) to (3.76), derived above, can be used to test the correct-

ness of solutions of the corresponding problems, and to estimate the

accuracy of approximate solutions obtained.

§4. CIRCULAR ANNULAR PLATE WITH

REINFORCED INNER AND FREE OUTER

EDGE. SOLUTION BY FOURIER SERIES*

Consider a circular annular plate, reinforced along the inner edge F

of radius R by a thin elastic rib of uniform cross section. Let L be the

outer concentric edge of the plate, of radius R,. The plate carries an

arbitrary transverse load q(r, _), including concentrated forces and couples,

and an arbitrary load along L and F (Figure 26).

The functions ,p(z) and ,_(z), which define the additional deflections of the

plate, due to the stiffening rib, are holomorphic and single-valued in the

domain of the plate, and can therefore be represented by Laurent series:

(z)= 8. _, , (z)= % _,

* The same solution was obtained in a slightly different way in/145/.

(3.77)
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where an and [_n are generally complex constants. Since the deflections of

the plate are single-valued, a_, must be real.

FIGURE 26.

The boundary conditions are, according to (3.1), (3.2), and (1.65)

-- xq_(t) +tq¢ (t) + _ (t) = (× + l)g-_- !on F,
qD(t) + _,_'(t) + _ (0 = P (t) -- R (t)

-- _/,p(t,)+ f,_' (t,) + _ (t,) = -- ic]l + c, on L,

(3.78)

(3.79)

(3.80)

where t, = R,ei°-_ Rla is the complex coordinate (affix) of the point on L, and

t = Ra is the affix of the point on F; C1 is a real, C2 a complex constant.

Expanding the function R(t) in a complex Fourier series, we obtain

C 8

.+_

2, n CaOnff -- _ "
(3.81)

The complex coefficients b are known; since the basic deflections w ° are

real and periodic, the coefficient b_,is real by virtue of (2.261).

The unknown functions P(t) and g(t), entering the right-hand sides of

(3.78) and (3.79), are related by (3.6).

Substituting (3.77) in (3.78), we express g(t) through the unknown

coefficients ah, _Ik:

+¢D

g(t)= _. a.d', (3.82)

where

____ l--v[3+'_ a -I-(n__2)__1,_2)__¢__,]an -- 4 t l _ v rn

(n =0, 4- 1, :E2 .... ). (3.83)
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Substitution of (3.82) in (3.6) yields

where,

-t-on

P (t) = K ln o + 2 _ B.o _,

in accordance with (2.260), [cf. (2.245)]

(l+,_s_° :l l_a.+,B, = -_= -_ ) -n- -- k_ -- 8-_] _ (n=4-1,-t-2 .... ),

+¢o -

1 1 \_-7*an [ 1 1 \ a,
--¢o --_

(3.84)

(3.85)

(3.86)

+= --_
The sums ._* and _.]' include no terms corresponding to n = O and n = 2,

---¢o

respectively.

Since the function P(t) defined by (3.84) is single-valued, we must have

K=O,i.e.,

-/'1 1\ (1 1)a°_+y,)--o_ V,--V, =0

or, using (3.83),

1 1 ,,:3++°,v,) _-_p'-"-') =o /3.87)

Substituting (3.77), (3.81), and (3.84) in (3.79) and (3.80), and equating the

coefficients of equal powers of a, we obtain

P2+ _-2-- 2 B-2 = 2b-2, (3.88)

-- ×[_2,12+ a 2n-2= 0, (3.89)

f}, -- uPl + a--l 'l--z= -- iC fl ?1-1' ( 3.9 O)

_l_-_I -_ @t--I-- 2B_, = 2b_,, (3.9 I)

g_._-t- (n 2) [_.+_ -t- a B = b. (n = 1, 2, 4- 3, -4-4 .... ).

--×__.q- -i-(nA-2)P.+_+l+a.q =0J (3.93)

-- ×_-o-}- 2_,q' = C,, (3.94)

_0 + 2p, -- 2B0 --- 2b0+ C_ (3.95)
2i '

R1
where '1 = -_. Due to the indeterminacy of $(z), we may assume that %= 0.
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Solvingthesystem(3.87),(3.88),(3.89),weobtain

2(6_+ 8_)b__

IS2= (1 + ×_:) (81 + 8.) + (1 -- v) ×n' -- (3 + _,) ]
[2(1--v) 61--62 1 ]Po=L_+_(-n') ¢,, __2=,.:is,

(3.96)

Since b_, and a_, are real, we find from (3.91) that B_, is also real. From

(3.90) we first find that C1= 0 [sic]. Solving (3.90) and (3.91) simultaneously.
we obtain

261 261
IS1= ---_Tb_,, a_,=-- --_ (×-- 1) rl'b_,, (3.97)

A2 = (1 -- x) 'rl_(1 -- v + 6x) + 2 (1 + v -- 61).

If we write n-- 1 and--(n+ 1) for n in (3.92) and (3.93), we obtain the

following four equations, which serve for determining the coefficients

_-,,,-,v IS,,+,, %_. K._.,+,_ (n > 2):

(3.98)

It remains to prove that system (3.98) has always a solution for n> 2.

We substitute for a c,+_) and %_, from the second and fourth equations in the
remaining equations, and obtain a system of two equations in two unknowns

IS,+, and _-c,-,_" Its determinant is

where

1 r__.) -(,,) 1 -I- C(")8_-_ --I-D ("_1 ]

3 + v_a.+u]
A'">= 2(n'--1){(n'--l)('q'--1)' + [1 + i--_--_ q jX

3+ ,__-=_.-,_11> o,
x [l + F=--_" JJ

B(,)= 2 (3 + v)[(2n + 1 + v),qa,+l)_ (2n -- 1 -- _)rl -_"-t_ --
l--v

-- (3 .-{--v) 1141-.}-2n z (3 -F v) -- 2"q2(n 2 -- 1) [Vl2( 1 -- v) -k- 2 ( 1 + v)] :> 0,

C(.)= 2 (3 "Jr-v) v)rlan+')[(2n --F 1 -}- -- (2n -- 1 -- v)11-a"-l)

-- (3 + v) "t141-- 2114(n2 -- 1) (l -- v) + 4 (n_ -- 1) (3 -- v) "q" -- 2 (5 -- v) n2 + 16 :> 0,

D (n)= 2 (3 + _')_('ql('*+')-- 1) (1 -- 11-w_-u) -- 2(n_ -- 1) (l --v) _ (rl_-- 1)_> 0.
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It follows that system (3.98) defines uniquely the coefficients an and

_,(n = 0, ± l, :t= 2 .... ) of q_(z) and _(z) in (3.77), so that the problem formulated

is completely solved. Equations (3.94) and (3.95), which have not been used

so far, serve for determining the complex constants C_ and C_, respectively;

we shall not do this since they are not necessary to us.

If we replace R_ by R and '1 by 1]-' in the above solution, we obtain the

additional deflections and stresses in an annular plate whose outer edge is

reinforced by an elastic rib. In the limit 8_ = 83 = oo we obtain the solution

for a rigidly clamped inner contour of the plate.

The problem of a plate with both outer and inner edge reinforced by thin

elastic ribs presents no difficulties. We must then replace (3.80) by (3.1)

and (3.2).

Axisymmetrical bending

In the case of axisymmetrical bending we have

0r_° 1

dr/r

so that all the coefficients bn in (3.81) vanish except

_l = - _ _,-dFjr.

We obtain therefore from (3.97):

ps = 2_, dw ° 6x . s/dw°\

while (3.77) becomes

8x fdraf'_ z (x--1)rl_x/dw °_, R

From [cf. (1.22)]

0_ = 2Re[_ (z)+ x (z)l,

we obtain the additional deflections:

wx = _x (r) _.a(Sx, k) Rx (d_dr )r+ C*,
(3.99)
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where

k =,1 =_,

r2 ] r

-3,.1, _, - _ :_3(_T T= _1 + _- _,)T

(3.1oo)

3+v
Since ×=T-_' we find that the function i_,(r)in (3.100) is identical with

F_(r,k) in (2.273) for r>_R.

The constant C* is determined from the condition that the deflections

vanish on the support contour. If the plate is supported at the contour

r=Rl, we have C*=0.

The additional bending moments in the plate are [cf. (2.275), (2.276)J

(1- o o8, ;11(d.11
RA, _,r2 "}- 1 \ dr Jr

(3.101)

where

R1

A, = [(l-- v2)(n'-- l)-1-b,(l -I-v)n_ "1-(l-- v) b_]> 0' n=_-.

Ac]ding the additional deflections w' to the known basic deflection of the

nonreinforced axisymmetrically loaded annular plate, we obtain the total

deflections of the annular plate with reinforced inner edge.

We present solutions of some simple examples.

Bending of an annular plate, due to moments acting at

the edges. An annular plate is bent by applying moments M = const.

along the outer contour r=R., and moments m = const, along the inner

contour r=R, which is stiffened by a thin rib (Figure 27).

m m

/. ;", ,I

FIGURE 27.
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From the solution for a nonreinforced plate ]169] we obtain the following

expression for the total deflection:

R' { rSw=O-Fw °=_ [m (l -- v) -- Mq' (l -- v _- Sz)] _ +

+ _' tm(I + _) - M(1 + _ - _01In _-/+ ¢o,_t.

The corresponding bending moments are

'{Mr=--_, rn(l--v=) 1-- -}-

If no external forces and moments act on the stiffening rib, (m-- 0), the

optimum value of bx, for which

over the entire plate, is

M, =/14, =/_1

_pt = (1 + v).

The stress concentration near the hole is then completely eliminated, and

the plate behaves like a solid disk under the same load.

Reinforcement of the inner plate edge by a rib of optin_lum rigidity

6_ pt _(l .-{-v) causes the maximum normal stresses to decrcasc by more
than 50 %.

The ratio of the maximum stresses

(amax)61=O

_* _ ({Ymax)51=l-/-v

RI

is given below as a function of _l =_-.

11 1.25 1.5 2.0 3.0 4.0 5.0 20.0 ¢o

11. 5.556 3.600 2.667 2.250 2.133 2.083 2.005 2.000

Bending of an annular plate by application of shearing

forces. The annular plate is supported along the inner reinforced edge

r=R, and subjected to a uniformly distributed load p-- const, along the

outer edge r=Ri (Figure 28).

115



. & g .I

FIGURE 28.

q q

I. " 2et - _1

FIGURE 29.

We obtain the total deflections from the known solution for the nonrein-

forced plate /136/:

w= 8_2--_b-_-* 4Tp[(I +v--6x)(l +v) ln_--6d lnRr +

r_ R
+2[qS(l+v)(v--l--61)+(1--v)(l+v--61)l_ilnT+

")+ II -- _-i [_P(3 + v) (l -- v + 00-- (1-- v) (3 + v-- 00 +

+ 2B* (I + v) (1 -- v + 61) In q]}.
(3.102)

The bending moments and shearing forces in a plate with stiffening rib

are

M,=--_-, 61(1--_) !--'q*_- +(l+v) iqS (l + v) (l -- v +61)--

[--(1--v)(l -{'-V--61)1 In _---_p(l + v) (1 +v)(l --v-P6D--

--(l--v)(l-{-v--Sl)Ti- Inq ,

M, = _ {,,8,(l - v) (l - ,1')+ (l + ,,) [,l' (1+ ,0 (I - v + 80 -

-(l-,O(l + v- _)1 in _-- _'(l +'0[0 + v)(l- v + o_)+

R*
-{-(i --'v) (1 J¢-v- 51)_-J In'q-- (1 -{- _) (I -- v)s Op - l)--

(-- qsSx (l -- "v) 1--_-_ , N,==PRIr-.I , N, = Hto ----0.

Table 6 gives values of a,,,ax for some values of TI=_-for _----0.3

and 0<th_.

Table 6 shows that by reinforcing the inner edge of the plate, we can,

at given load, reduce considerably the calculated stresses in the plate. A

detailed analysis of the solution is given in ]145]. For 6,=l+v the plate

behaves like a solid disk under the same load.
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TABLE 6

81 1 25 1.5 2 3 4 5

0 I. 104

I 0.23

1.3 0.19
2 O. 20

5 0.21'

I. 24

O. 395
0,345

O. 370
0.402

0.415
0.428

1.48

O. 623
O. 556

0.612
O. 689

O. 720
O. 753

1.87 2.17

0.919 I. 12

0.830 1.02
0,932 1.15
1.08 1.34
1.14 1.42

1.20 i .51

2.41
1.27

1.16
1.31

1.54

1.64
1.75

The method of dimensioning a rib of the required rigidity will be

explained in § 8 of this chapter.

Bending of a uniformly loaded simply supported

annular plate. An annular plate is simply supported along the outer

edge r=R_ and subjected to a uniformly distributed load q= coast. The

inner plate edge r=R is reinforced by an elastic rib on which no external

load acts (Figure 29).

We obtain the total deflections from the known solution for the non-

reinforced plate ] 136/:

w___wt _{_up = qrt • r* r r*
_.q-Dlln_-.-.-bD,_iln_-..t-Ds.-bD_- _ , (3.103)

where

DI
{(I -I- v -- 81) [(3 -l- v) (2 -- _*) -I- 4 (I Jr v) In q] --

--(I "t"v) (3 -t- v--_))

Ds = qR*-- -_ff

D s _ qR_ s
64DA. {[16 -]- 8 (I q- v) In _ -- (Sdl-v)l]|][1]l(61-_- l--v)d I-

,-I-2 (1 -1-"¢-- 6x) In TI] -I- [(v -- 1) -- (1 --1"-v) in _] I2 (3 -I- v--6a)q-

+ n'(5 -- 3v+ 3_)1}

qR* " s'--
D, _ 32-_, ITI _h -I- I -- _)[(3-{-v)(2--Tp).-b4(I--b_) InII-{-

+ (1-- _) (Sx-- 3-- v)}

(3.104)

TABLE 7

8x 1.25 1.5 2 3 4 5

0 O. 592

I O. 124
I. 3 O. 107

2 0.III
5 0,118

I0 O. 120
20 0.121

¢¢ 0.122

3.976

3.310
3. 271

3,291

),317
). 326
).332
).336

.443
). 607

).541
).596

).671
).701

).717
). 734

[.881 5,082
1.925 1.075

).836 ).976
).938 1.103

:.086 1,289
..146 1.366

:.179 [.408

.214 1.453

2.192
1.157

1,052

I. 193
1.401
1.487

1.534

1.585

117



Setting in (3.104) 8,=_ we obtain the solution for the case of the inner

plate edge being rigidly clamped ]136].

The bending moments in the plate are

C"R']
--4(I-[-v)C_-I-2(I-_) I_T]

qR' [-- (I-_ 3_,)_-_-[-4 (I -_-v) In_- nL 2 (I-{-3V)--M0=

R,]
8D 8D

c; = c;, _ _-_ O,

(3.105)

An analysis of (3.105) shows that for 8,<(InUv) the moment M 0 is greater on

r=R, while forSl>(l+_)the moment M, is greater. For 8l=l-{-v we have

M,=NI 0 on r=R.
_

Table 7 gives values of umax_--hT for some values of ,1 for _ = 0.3 and

When 8,=lWv the stresses in the plate are minimum. The calculated

stresses in the plate are reduced by more than 50% when the inner plate

edge is reinforced by an elastic rib.

§ 5. CIRCULAR ANNULAR PLATE WITH

REINFORCED INNER AND RIGIDLY CLAMPED

OUTER EDGE. SOLUTION BY FOURIER SE!HES

A circular annular plate is reinforced along the inner contour F (r = R)

and rigidly clamped along the outer contour L (r =R.). The load is

arbitrary (Figure 30).

( X

FIGUI_ 30.
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We represent the functions _(z) and @(z) in Laurent series, the origin of
coordinates being at the center of the hole.

Z n

_(z) -- _, 13__,

+¢o

Z n

* (Z)= _, a -_ ,

(3.106)

where a_, and 6-, are real while all the other coefficients are generally
complex.

The boundary conditions in this case coincide with (3.78) to(3.80), if in

(3.80) we write ×=--land C,=Cs=0. Substituting these values in (3.88)

to(3.91), (3.94), (3.95), and (3.98), we can write down directly the system
of equations for determining the coefficients in (3.106);

P_+_-2 -- 2B-2 = 2b__, (3.108)

_2,1_+ a__,1-2 = 0, (3.109)

+ 2p_,f + % = 0, (3.11 o)

2_, + a_,_-_= 0, (3.111)

2[_i+ a_1-- 2B_j = 2b_p (3.11 2)

[_.+,--(n-- I)__(._,)-4-a_(_+,)-- 2B (.+,)= 2b_(.+,). (3.1 13)

•I"+'[_.+,-- (n-- I),i-4"-')__(._,)+,i-(_+')a_(..+,)_--0. (3.1 14)

(n + 1) _n+t -4- _-(n-n -4-an_ , -- 2Bn_ , = 2b._p (3.115)

(n + 1) I_n+,_l"+' + __(,z_,)TI-(n-') + _l"-'an_ , = 0, (3.116)

_'o+ 2gz -- 2B¢ = 2bo+ Ca
_-. (3.117)

Solving (3.107) to (3.110) simultaneously, we find:

- 2'I__2(81+ 82)

a-2= 014-1)(Sx+bS)+(3+v)+114(l-v)

2b_s(81+ 8s)

[_= (,14__ i)(8_+ 82)+ (3+ v)+ ,14(l__v)

a, = -- 2,12_2-- _o.

(3.118)

We obtain from (3.111) and (3.112)

2b__8_ 4q_b__8_
[h As a_, = A_ ' (3.119)
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where

A8 = 2"q_(1 --v + 81)+ 2(1 + v--SL). (3.120)

E quations (3.113) to (3.116) have a single-valued solution for n > 2 and

serve to determine the coefficients [_n+,, _-(n-,v a_,, a_(n+, _ (n > 2).

Substituting the known coefficients entering in (3.106), we then determine

Ca from (3.117).

Replacing '1 by ,1-' in the above solution, we obtain the additional

deflections and stresses of an annular plate whose inner edge is rigidly

clamped, the outer edge being reinforced by an elastic rib.

In particular, when81=8_=oo, we obtain the solution for a plate with

perfectly rigid central hub.

Bending of a plate by application of a moment

Let the inner edge of the plate be subjected to shearing forces whose

p=-_ycosS. The principal vector (force resultant)distribution is given by

of this load is zero, and the principal moment equals M (Figure 31).

FIGURE 31.

The basic deflection is in this case

w°---=_ (1--2c)_ +(c-- 1)_3+2_1n-_-}-c cos8,
(3.121)

where

c= 3+v--'lS(l+v) (3.122)
3+v+'q4(l--v) "

0aP) in (3.81) in a Fourier series, we obtainExpanding the expression _ r

M M ('12-- Ip
bo----_-z=--_--_--_--_--_--_--__-_[vl21n_+(l--c) (lnTll)], b__ = 16gD[(3+v)+_l'(l--v)]"

(3.123)

All the remaining coefficients bn vanish.

Substituting (3.123) in (3.118), we obtain the coefficients a0. [_0, a-2, [_
of the functions cp(z) and _(z) in (3.106). We then determine from (2.142) the
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additional deflections w _ due to the rib:

= r 3 R_) cos 0,

where

B _ -- 2n2R_fi_ MR_ n_(nz-- I)2(8_+ 8s)
4:zD [(.q4__ 1)(81.._8_)-{-(3+ v) -_

-I- TI4(I-- v)][(3+ v)+ ,q4(I-- _)].

In particular, letting (61+82)_oo, we obtain the known solution /43,213]

for a plate whose center forms a perfectly rigid core to which the bending

moment M is applied.

The angle through which the plane of the stiffening rib rotates is

¢P= -- r---_0 ,=R = \ r cos 0 ],=e -- C. _-_.

Table 8 gives C. for some values of _ and (61+8,), with v =0.3. It is seen

that even a very small rib (e. g., for which 8_ + 82 = l) increases consider-

ably the rigidity of the plate. The elasticity of the plate-edge clamping
should be taken into account.

TABLE

11-l
0 I 2 5 I0 oo

0.5 [}.4046 0.2400 0.1864 0-1334 0.1095 ).0809
0.6 [}. 1835 [}. 1188 0.0934 0.065_ 0.0520 ,.0350
0.7 ).0643 [}.0468 0.0382 0.0271 0. 0210 ,.0125

0.8 ).0152 [}.0125 0.0108 0.0081 0.0063 ).0032

Axisymmetrical bending

Setting x=--I in (3.99) and (3.100), we obtain the additional deflections

w_, due to a stiffening rib, for an arbitrary axisymrnetrical load (the

constant C* is determined from the condition that wL= 0 for f = R1):

where

wl = l_s (r) _,, (81, k) Rl( d-_-_)r,

!_2(r) = -_ -- 1 -- In RI--'

kS_
_'4(81'k) =(l--v+8_)+ k_(l +_--61) k=Ti-j R

(3.124)
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The additional bending moments in the plate are

D61 R_ " du o

M' =- RAT** [(1--v)-;_ + (1 + v)] (-_)r /

D61 R_ duo '

M,=_**[(1--v)7_--(l+v)l(_r)r[

where

a** = n"(61+ 1 --v)+ (1 + v-- 61).

(3.125)

(3.126)

We shall now give some simple examples.

Bending of an annular plate under a uniformly

distributed load. A circular annular plate is rigidly clamped along

the outer edge and subjected to a uniformly distributed load q= const.

The inner edge of the plate is reinforced by an elastic rib on which no

external load acts (Figure 32).

 lllllll  ,llll l111
7y//_ 5"////////////_ V_//. _////////////_

I_ _I
| - 2R¢ "

FIGURE 32.

From the known solution for the nonreinforced plate ]75], we obtain

the total deflection

qr 4 r r _ r r _
w = w _ -3r- w ° =6_ --l-D1 In _- -b D_ g/-In _-- -}- Ds-{-D,_, (3.127)

where

"q_qRa [ (1 -_- V -- 61) (ll_ -- 4 In _1)+(61+ 1-- v)l
DI -_ 16DA**

qR 4
D2 = 8D

D TI2qR4
a = 64--D-_-,, ['14 (1 -- v -{-- 61) -{'- Ti_ (3v -- 5 -- 381) -I- 4"q2(1 4- v -- 61) In "q-l-

-1- 4 (3 -/- v -- 60 In _l -- 2(3 -'t- v -- 61) -- 16(1 -{- "a -- 60 ln2_l]

qR 4
D 1 = _ [(3 +v -- ,51) -{'- (1 -- v --[- 61) (2_i I -- -q4 + 4-ql In 'l)l

(3.128)

The bending moments in the plate are given by (3.105), where D, and D4 are

defined by (3.128).

¢r [qR_
Table 9 gives the magnitude max#-_- for some values of 11 and 6, with

v=0.3. It is seen that by reinforcing the inner edge of the plate we can
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reduce the calculated stresses. The smaller _1, the more effective is the

stiffening rib. The minimum values of a,-ax correspond to an absolutely

rigid core (8,=_ co).

TABLE

_._i,.__I_I_Io
0 0.I05 0.259 0,480 0.657 0.710 0,730
l 0.099 0,236 0.430 0.600 0.665_0.695
2 I 0.0951 0.223_ 0,409 10.581 ] 0.6511 0.685
5 [ 0.087 L0.20710.386 _0.553 _ 0.639 _0.676

lO I 0.082] o. 19710.375 _ 0.55510.63310.672

/ °'°72Zo. 182i o._l I0.546/ 0.629t0.668

- _
_///////////////]g

FIGURE 33.

Action of a load distributed

deflections of the annular plate,

along a circle. The total

shown schematically in Figure 33, are ] 31] :

for Q < • < R,

w = 8DA,. [ R_

Q' -- l--S1)]ln_ + [2 (1 +-[- _--i (v + v--8,) (I --ln_)

(_.)]( "k)}+ (I --v +Sa) "¢ls+ 1-- ;

forR_r<Q

(3.129)

.--_..{"_,_o[,(,+,°;.),,+_-o.,+_,.,,- _+o,,%1,°_+
+(,-_)[_,,+_-o.,0.°7-,)+(_,_+,),_-,-°,,_']},_o,

Substituting Q----R in (3.129), we obtain the deflections of a plate loaded by

shearing forces p = const, along the inner edge:

P_ 2Cl +,,-_h)I.,I- 2- z_.._w ---- 4TIDal,,

l( _')l+[(l+v_Sl)(l_ln_+lil--v+Sl)('q,+l) 1--_ . (3.131)
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§ 6. METHOD OF EQUIVALENT RIGIDITY

1) We assume as known the deflections w = w(r, 6_) of an axisymmetrically

loaded circular plate (r_ R_) with concentric stiffening rib of radius R (cf.

a

b

FIGU RE 34.

§§ 12 and 14, Chapter II). The relative
A

flexural rigidity of the rib is 51 = _. The

plate is loaded only in the annular region

R_r::Rl(Figure34,a). Weshallshow

that we can easily find the deflections

w. (r, 6_) of an annular plate (R _< r< Rj)

under the same load when its inner edge

r -Ris reinforced bya thin elastic rib

whose rigidity is also 5, (Figure 34,b).

In fact, we conclude from (2.51) that in

this case the central disk(0 _< r _ R)is equi-

valent to a stiffening rib whose relative

flexuralrigidityisSl--l-t-'_. We therefore

obtain w. directly from the expression for w by replacing in it 51 by

5'1 = 51 -- (1 + v). (3.13'2)

In other words

:_,. (,, St) = w (r, 51). ( 3.1 3 3)

This procedure is called the method of equivalent rigidity.

2) This method can obviously be used also in the following way. Assume

as known the deflections w.(r, 61) of an annular plate (R _ r _< R_) with

reinforced inner edge. The relative flexural rigidity of the thin stiffening

rib is 51. According to (3.133), we can directly obtain the deflections w(r, 5_)

of a solid plate under the same load having a concentric rib of equal

rigidity St:

w (r, St) = w. (r, 61) (R 4 r _ R0, (3.1 3 4)

where

61 =5, q- 1 q-v. (3.135)

The deflections w_ of the central part of the plate (0 _ r _ R) can be determined

by solving the problem of bending of a circular plate with reinforced edge

subjected to uniformly distributed bending moments transmitted to it from

the annular part of the plate (cf. §12, Chapter II). We obtain finally

[ *d_ v dw.(r, 5;)] R_--r _w_=w,(R, 61)-- d'Zw--61) d- r dr ,=R" 2(1+'v+8_)" (3.136)

Two examples of the application of this method are given below.

1) The annular plate is loaded uniformly a.long a

circle (Figure 35). Replacing in (2.294) and (2.295) 6_by6 I, given by

(3.132), we obtain the solution for the plate shown in Figure 35:
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2p

FIGURE 35.

for R _: r < Q

q

FIGURE 36.

g2

for _ < r < R,

[20-_)[i '2

where

K. = 8rid [I +v +2In , (3.139)

__ (1 +v) (_,- I--v)_.s (51, k) = kl (5;, k) = • (1 __ V2) (1 __ k,) ..]_b][k.,(l Z _'_ ..]_(i ..]_v)]. (3.140)

The functions w° and Woo are defined, respectively, by (2.289) and (2.290).

When Q=R, (3.138) reduces to an expression differing from (3.102) only

by its sign. (Compare Figure 28 with Figure 35 for o=R).

2) Circular plate with concentric rib partially loaded

by a normal pressure (Figure,36). Applying themethod of
equivalent rigidity, we replace 51by 61=6,+l+_ ((3.135)) in (3.127). As a

result, we obtain for e < r _ R,:

( (,4 r2,)w, = 64D I(lqa -- 1) 51 "-5 2_21 [012--1) bl+2Tl_l _ -- 8 _% In _- +

-[- TIll [114 (2 -_- 61) -- 11'* (8 --_ _l) -- 4T126t In 11+ 4 (2 -- 61) In TI-- 2 (2 -- 60 +
r

"b 1661 In s 11]-- 4",1_ [(2 + 61) -- 6] (I"19 --4 In q)] In _ + 2 [(2 -- 6,) +

:}-}- (2 + 61) (2'qz -- q4 _}.4q2 In vl)] _-{. (3.141)

The deflections for 0 _ r < R are obtained by substituting (3.141) in (3.136):

qR4 {6, [0P -- I) i (_Is -- 3) -}- 4_II (4 In _I "}- I -- 11s)In 111-{-"_ 641:) [(I]! -- I) 61 + 2'I'I

(") }+2(_ia--l)O14--5_lJ--2)+2411Sln_l--4 I--_ (l--_l_+4_ialn_ . (3.142)

§ 7. PLATE OF ARBITRARY SHAPE, REINFORCED

AROUND A CIRCULAR HOLE OF SMALL RADIUS.

SOLUTION BY FOURIER SERIES

We assume as known the deflections _._ of a plate of arbitrary shape,

having a small circular hole of radius R, located at a sufficient distance
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from the edge (5R <_d, where d is the least distance from the center of the

hole to the plate edge).

We shall now determine the effect of a thin elastic rib, reinforcing the

edge of the circular hole, on the state of stress of the plate, by finding the

functions _(z) and $(z) which characterize the additional deflections w t due

to the stiffening rib at r---- R. We shall use the solution obtained in §4 of

this chapter, assuming the plate to be unbounded. (The origin of coordinates

is placed at the center of the hole.)

We represent the functions qD(z) and _(z) in the form

(z) = 8_.7, _(z) --- a_. ,
nm0 _1

(3.143)

hence, in the solution of §4 we must set

a 0=%=_=0 forn_l (3.144)

and discard the boundary condition (3.80). As a result, the system (3.87)

to (3.95) becomes

3-{-v
(81+ 6_)[_o+ (61--8_)a__= 0

lm'v

-- (n-- I)_-(n-J) -4-a_ (n+,)-- 2B__n+, _ _ 2b_+,}

8-(.-,7--2Bn-,= 2bn_,

(3.145)

where

Solving this system yields

26_,8,

a-t = l--v+8[

(n-- 1)bn_ , [2(n-4- 1) blbs -4- ( l -
_--(n--l) _ An

(n + 1)b_(,,+n (1 --v)(61--82)

a_(.+,) = _ b._, [2(ns -- I)616_ + (n-- I)(I-- v)×

n+l

X (61 'I-8s)-- (3 q- v)(61-- 8_)]"_--_Z b-(n+')[2(n--l)616_'l-

+ (3 -}-v)(81 + 8s)-- (n-- I)(I -- v)(81-- 8s)]

An = (n _ -- I) 816s"-{-(1 "4- v "4- 2n) (81 --{-8s) + (1 -- v) (3 + v) (n _ 1).

(3.146)

(3.147)
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Here b_, and b__n+l_ are the Fourier coefficients of the function -_- ,.-R

assumed to be known (cf. (3.81)).

From (3.146) we find the functions ¢p(z) and %t(z)in (3.143). This solves

the problem.

Bending in one direction of a rectangular plate

A rectangular unbounded plate, reinforced around a circular hole, is

bent by applying moments Mx = M distributed uniformly along two opposite

edges (Figure 37).

/

FIGURE 37.

(0_2) from the known solution ]118] for a nonreinforcedDetermining -_- ,=R

plate with circular hole, we find

MR MR (3.148)
b-l= 4D(I __v_)' bl---- 2D(I -- v)(3+v)"

All the other coefficients bn(n=0.4-2.4-3 .... ) vanish. Substituting (3.148)
in (3.146), we determine the coefficients of the functions ,_(z)and ,_(z)in

(3.143):

MR6x
a-l= 2D (I--v2)(I-- v+80 '

MR
a-3= 2D (l-- v)(3-Fv)A_ [6618s-- 2(I"-Fv)51"F48s],

MR h_ [6818_ + (1 -- v) (81 + 81)],[_-I= 20(1 -- 'v) (3 + 'v)

As = (1 -- v) (3 + v) + (5 + v) (Szt+ 81) + 38xSj.

The functions ¢p*(z)and _* (z), which describe the total deflection of the

plate, are

q_*(z) =--_ 1_._-+ p_t7 ,

z** (z) = -- Kff / Y:-4" _" + - -- +
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where

a: l =2(1 +v--81)/(l+v)(l--v+Sl) /

2

_2 = _---_)h_ [(1-- v)_ -l- ( l -- v) (8' -t- 82) -- 381821 •

• 2
a-a = ( 1 -- v) As [( 1 -- v) _ + (3 -- v) 81 -- (1 + v) 82 -- 381821

(3.149)

In this case we cannot obtain complete similarity between the state of

strain of a plate with circular hole whose edge is reinforced by a rib of

constant cross section, and that of a solid plate, since this would require

that all three coefficients (3.149) vanish; this would yield three equations

for determining the two unknown rigidities 51 and 8_.

It is, however, possible to select such rigidities of the rib that the

stress concentrations in the plate will be greatly reduced. Thus, for

51 = 52 = 0.85, (3.150)

we obtain for v=0.3: a21= 0.4467, a2a = _21=--0.1033.

The moments acting on the plate along F(r = R) are then

M e = M (0.5782 -- 0.4509 cos 20),

M, = M (0.4218 -t-0.5852 cos 2e),

Hi = --0.4819Msin2e.

The bending moment becomes maximum at 8 = _-t:90 ° where

Mma X = 1.029 M.

TABLE 10

8_
h!

5'/5' 0 0.7 I I 1.3 2 5 1 20 oo b

0,038
0.081
O. 135
0.184
0.263
0.323
0.402
0.649
1,000

1.788
1.788
1.788
1.788
1.788
1.788
1.788
1.788
1.788

I
0.9961 0.872
1,005 / O. 879
1.0I6L 0.887
1,025 / 0,893
1,0381 0.9O3
1.048 / o.9Og
1.o59 / o.917
1. o87 [ o. 935

1.115] o.o53

9.7861 0.65sl 0,4361 0.152
 .78910.051i038710.0060.79310.044103391_0.096
o. 79610.6381 o. 305 / -0.152
0.s0110.63110,264 / -0.210
0.80410.62610.239 / --0.239
0.80710,62110.214 / --0.29O
0.815 0,608 0.162j --0.313

0.823 0,597 0,122 --0.343

--0.626 [
_0.6261 64
--0.626 I 3
--0.626 [ 2,5
--0.626 ] 2
--0.626 I 1.75
--0.626 I 1.5
--0.626 1
--0.626 0.56

Thus, a rib whose relative rigidities are given by(3.150), prevents

almost completely stress concentrations in the plate, and is practically

optimum. Tables 10 and 11 give, respectively, values of MI/M for e=90 °

and of M,/Mfor e=0at r=R for different values of 81 and 52. The last

columns of these tables contain the corresponding values of hl/b (cf. Table

14 below) for a rib of rectangular cross section. We can see that for

0.7 _ 5, • 1.3 a variation of g_ has little influence on the calculated stresses

in the plate. In other words, the coefficient of stress concentration in the
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platedependsmainlyontheflexural rigidity of therib, andfar lessonits
torsionalrigidity.

TABLE11

,12/6,

0.038
0.081
0.135
0.184
0.263
0.323
0.402
0.649
1.000

0 0,7 1

0.2021 0.261
0 , 255 i 0 m334
0.317 [0.418
0,368 0,487
0.4441 0 586
0,496[ 0.653
0,559 i 0.731
0.720 0.926
0.885 1.117

I
1.3 * 2 5 20

I

0 309 0.397 0.643 1.338 3.626
0.401 0.531 0.918 1.885 3.626
0. 505 10.677 / 1.183 [ 2. 2671 3. 626
0.599 0.791 [ 1.372 [ 2.480 3.626
0.709] 0.947[ 1.605] 2.697 / 3.626
0.788/1.048] 1.741 | 2.806_ 3.626
0.846/1.161/1.884 12.907} 3.626
11100[ 1.420[ 2.175 [ 3.083[ 3.626
1.3o7t1.648[2.396[3.198[3.626

h 1

b-

6
4
3
2.5
2
1.75
1.5
1
0.56

Bending of a strip of finite width

A thin plate simply supported at the edges y = :t=a and having the shape

of a long strip of width2a, has a circular hole whose center lies on the

axis of symmetry of the strip. The edge of the hole is reinforced by a thin

elastic rib, and the plate is bent by applying moments M u = M uniformly

distributed along the edges (Figure 38).

fff/f / i/I/#,-//"M

t" ' " J," ' " 'X.__

¢7
I I I I IA'I I Ill I I

M .q, 'Z

FIGURE 38.

ow°) from the known solution ]118] for a nonreinforcedDetermining _ =e

plate with circular hole, we find

MR MR

b_l=2D(l__v ), bl= D(3-I--v)' bn=O(n=O''4-2'4-3 .... )"

The functions _*(z) and_*(z), which describe the total deflection of the plate,

are

MR/z -. R_

MRf I . RS\- t- -R+.:, + J.
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where

If VCe set

a*_H = 2(1 H- v -- 81)/(1 -- v -]- 81),

_'--, = -- _ I(1 -- v) 2 + (1 -- v) (81 + 82) -- 3815,21,
2

a" 3 = -- _ [(I -- v)" + (3 -- v) 51 -- ( I + v) 62 -- 381821.

8_ = 82 = 0.95, (3.151)

we obtain a'_, = 0.4242, a'__3= _'_, = 0.1176. The bending moment acting on the

pla't_ along r=R becomes maximum at @ = -}- 90 ° :

Mmax = 1.023 M.

I ABI,E 12

5:/5,
0

0.038 1.852

0,0_1 1.852
0.135 1.852
0.184 1.852

0.263 1.852
0.32.3 1,852

0.402 1.852
0.649 1,852

1.000 1.852

hi

0.7 1 1.3 2 5 20 co -b

1 067 0 939 0 850 0 718 0 500 0.243

1:073 0;94410:8;210:714 01466 0.141
1.08010.949 0.855 0.709 0433 I 0.070
1,087 0.95410.857:0.705 0,409I 0.030

1.09610.960!0,86110.70010.3801 --0.010

1. 103 ] 0. 965 ] 0. 863 10. 696 ] 0,363 ] --0.030
1 110 0.970 0 86510.693 0.3451 --0.049

. 30 0.983 0 671 0.68310 308! sO p 082

1.150 0.995 0 676 0.676i0.281 --0.103
q

--0.300

--0.300
--0.300

--0.300
--0.300
--0.300

--0.300
--0.300

--0,300

6

4
3
2.5

2
1.75

1.5
1

056

TABLE 13

b,
h,

20 co _"6,16_ 0

I
0.0381 0
0.081 I 0
0.1351 0
0.184] 0

0.263] 0
0.323] 0

0.402 ] 0
0.649 0

1.000 0

0.7 1

0.372 0.454
0.409 0.505

0.452 0.564

0.489 0,612
0.542- 0.682
0.578 0.728
0.622 0.784
0,735 0.920
0.850 1.053

1.3

0.516
0.581

0.654
0.713

0.796
0.851

0.916
1.070

1.215

2 5

o.6191o.855

o.71411.o47
o.81511.233
0.8961 1.365
1.oo511,528

1,o75 1.624
1,154 1.724

1,336 1.927

1,495 2.082

1.382

1,765
2.033

2,182
2.334

2.410
2.481

2.604
2.683

3.000] 6

3.0001 4
3.0oo I 3

3.000 I 2.5
3.0001 2
3.000[1 75
3.ooo I 1.5
3.000 1

3.000 0.56

Thus, a stiffening rib whose relative rigidities are given by(3.151),
prevents almost completely stress concentrations in the plate.

Tables 12 and 13 give, respectively, values ofMo/Mfor O=Oand of M,/M
for 0 = 90° at r = R for different values of 51 and 82. The last columns of

these tables contain the corresponding values of _L (ef. Table 14 below)

for a rib of rectangular cross section.
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Tables 12 and 13 show that for values of 5_ close to unity, a variation of

52has little influence on the calculated stresses in the plate. The same is

true for a variation of the ratio between the characteristic dimensions hi
and b of the rib section.

§ 8. SOLUTION BY QUADRATURES FOR THE
EXTERIOR OF THE CIRCLE

The edge F of a circular hole of radius R in an unbounded plane is

reinforced by a thin elastic rib. The origin of coordinates is located at the
center of the hole.

Let z = 0_(_) = RE. whence t = Re, where (_ = e 10. The boundary conditions

(3.1) to (3.2) then become

-- ×_ (o_+ 8_' (is)+ ,_ Co)= f Co) }(o)+ oq_'(o) + _ (o) = g, (o)-- go (_) on _',
(3.152)

where y is the unit circle':',

t (is)= --(_+ I)g(_is),g*(is)=e(_is)+2-_].

i• , 1 {Ow° . Ow0\

We introduce the functions

(3.153)

1" (is) = -- 2iD (1 -- v) is[ (is) ].
G(is) = 2iD (1 -- v) (_g, (is), G0 (a) = 2iD (1 -- v) isg0 (is) f (3.154)

The first two of these functions are unknown, while the third one is

known. The function g, (o), which describes the strains of the stiffening

rib, is related to the function l* (a), which depends on the load transmitted

to this rib by the plate, by (3.6), which in this case becomes

4_ ,dg, (is) _ -_ ) 1"

The polar angle 0 is measured clockwise from the x-axis, and therefore
RdO = -- ds.

We subtract and add boundary conditions (3.152) after multiplying both

sides by 2iD(1--v)is and obtain on _,:

1" (is) + G (o) -- Go (6) = 8i Dis q_(o)---_ ( 3.1 5 6)

ll*(o)--G(is)+Go(is) [q_'(o) + o_ (is)]. (3.157)
8iD

* The functions g(R6) and P(Ra)are defined by (3.3).
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Theright-handsideof (3.156)representstheboundaryvalueof a
functionholomorphicinsidey and vanishing at _ = 0, while the right-hand

side of (3.157) is the boundary value of a function holomorphic outside y,

including the point at infinity, where it acquires the unknown value
8iD

----_--bi = const. (bt is the coefficient of _-_ in the expansion of the

function _(_);_(c_)= 0).

We represent the functions (3.154) in the form

6 (a)= (/,(a)+ P 4-0_(a), 0o (a)= Go,(c,)4-ro ÷ Go_(a)I,
f1" ((;) = It (a) + Io + 12 (a)

(3.158)

where Gl(a), G0z(a), l,(a) are, respectively, the boundary values of the

functions Gz(_), G0,(_), /l(_), holomorphic inside y and vanishing at

_=0; G_(a), G02(a), 12(a) are, respectively, the boundary values of the functions

G_(_), G0_(_), I_(_) holomorphic outside 17 and vanishing at infinity; F. F0, l0
are constants.

1 do
Multiplying both sides of (3.156) by the Cauchykernel2_i a--_ and

integrating along y, first for ]_1 > 1 and then for ]_] < l, we obtain

lz (_) 4-/0 4- 61(_) 4- r -- 001(_) -- r0 = 8iD_

Similarly, we integrate (3.157) for]_]<l, and obtain

(3.159)

-_[I,(¢)+/ol -- G,(;)-- r + G, (¢)+ ro = -- 8i___DDbl.
X

(3.160)

Setting _=0in (3.160) and in the second equation (3.159), we obtain

--8iDbl+×F--Io=xFo, 10 + P =F0. (3.161)

Let now _a in (3.159) and (3.160). Taking (3.161) into account, we
obtain

Since

I=(a)_--G_(a)4-Gode), I,(a)= xO_ (a)-- xGo_(a).

-- = -E' _ [ag, (,_)]-- -E ag, (,_) = _- a I've', (a)] --

}-- ag, (a) ---- 2RD(1 --v) [o'G'(a)--G(,_)],

(3.162)

we can rewrite (3.155) in the form

°'G'(a)--G(a)4- 2_---zb_[(8_-l-ts_)l*(a)-F(t_z--'5_)l*(a)l=Oony; (3.163)
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where

A C
8,=--_, 82= RD" (3.164)

In the same way as we derived (3.161) and (3.162) from (3.156) and (3.157),
we obtain from (3.163):

oG;(aI--O,(o)+_[(8,+8=)l,(a)+(8a--8,) 1, (.)] = 0, / (3.165)

_; (o)- o,(_)+ _-_ [(8,+ 8,)i, (o)+ (8,- 8,)_[ =0,]

-- F + _ [(8, + 8_) 10 + (8, -- 8,)I0] = 0. (3.166)

Taking (3.162) into account, and noting that

• dGk (k=l, 2),aG_Co)= -- =-_- (3.167)

we obtain from (3.165) two ordinary differential equations with constant

coefficients for determining the unknown functions 6k(o) = Gk(0) = Gk (k = 1, 2):

dGj - }

d-T + alxG, + al2G== V1

dG_
dO _-a=tGl -t- a==G== Va

(3.168)

where*

'/

(, ,)

(3.169)

v, = v, (,,)= _ [(_,- _,)o0,- (8,+ 8,)_.,q.

v,=_,(o)=_ i(_,-.,)._.,-(o,+8,)_.,1 ]
(3.170)

* it can be shown on the basis of (3.153), (3.154), (3.158), and (3.1"/0) that the functions Va and Vs are
single-valued on y.
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We also obtain from (3.161) and (3.166):

82 81

Re/o = 1 -- v Jr 6a Re Fo, Imlo 1 -- v _ lmI'°

! --v 1 --v
ReI" 1 -- v +6-----_ ReF°' ImF = "1 -- v -{-6_ ImF°

! ( i8, 6_ )ib,= 2D(I -- v) 1--v+82 ReF° l--v q- 8s ImF°

3.171)

To solve system (3.168),

from which we find

we form the characteristic equation

_l Jr (an "-I-a2,)X -F (aua22 -- al,a,,) = O,

i 1
_'1,2= l'lJ'l.2= {(_- "_ "_'1) -t-

4-V/ [1-- l+v2 4 k_, _,J r

3.172)

3.173)

Here _, and 1_2are always real and different.

The general solution of system (3.168) is (cf. for instance Stepanov/133/)

Ga = Ca (a_ + ilh) e i'° + C, (a22 + ilx2)eI"'l + Y,}

G_ = _ Cxa21et"'l -- C_a21etu'° Jr 1/2 I
(3.174)

where C,. C, are still undetermined constants, and Y,. Y2 are particular

solutions, single-valued on y, of system (3.168), obtained by varying the
constants:

Yl F, -- Fx [(a_ + ipt)V,-- a,=V3] e dO --

iel_'! _ --l.,!

.ei_,i ('

)'. J +,.,)v.-

iel_'t f --lg, OIX2-- I_, [(an + i_2) V2 -- a2_Vx]e dO

(3.176)

For the functions 6, and G2 in (3.174) to be single-valued, it is necessary that

Ca = C, = O.
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and therefore

G=(a)= Y,, G=(o)= Y_. (3.176)

The functions

(+)
-- al2V,(_)l_-_t+'t'_d; _2_-_, S l(a=2"{-i_2)Vl(_)--

G, (_)= _,__-----_I(a,,+ iu,)V,(_)--a_,V,(;)I×

x _;-c'+"'_d_- _' .I"_2-- _, _[(a"+ i_,) V2(_) --

--a_y, (_)IU"+"')d_

(3.177)

are holomorphic outside y.

The unknown functions ?(_) and,(_) are directly expressed through the

functions (3.177). In fact, solving the boundary-value problem (3.152),

taking (3.158) [3.161 and 3.162] into account, we obtain

* (_)= _-m(-)[_ _-_- - r + ro- o, (:)+ Goo.(_)- t
1 - ! d - 1 d- I

(3.178)

This solves the problem.

The advantages of this solution over that by Fourier series are most

evident when the plate is loaded by concentrated forces or moments.

Several simple examples are given to illustrate the procedure for solving

problems by this method.

Pure bending of a plate reinforced

around a circular hole

An unbounded plate• reinforced around a circular hole of radius

bent by applying moments M_ _=/_y'_'= M at infinity.
We have in this case for a nonreinforced plate /I18/

1 , +l-_v ln(x' + y_)J.M [i__( x +u')w_ = -- -_-D-

• is
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MR 1 MR ! !
_° (0 = -- -_-.-FT¢ _' *° (0 = 2D l -- v

The functions correspond to this basic deflection. From (3.153),

(3.158), (3.170), (3.171), (3.175), and (3.176), we obtain

£o (o) = -- MR/D (1 -- v_) o, GO(o) _ -- 2iMR/(I + v),

Oo,(o)=Oo2(a)=O, Fo= -- 2iMRI(I + v),

Vl=Vs=O, F=--2iMR(I--v)/(I +v)(l--v+6,),

bl = M RSd D ( 1 -- v_) (1 --. v + _1), Y, = Yj = GI (o) = G2(a) = 0.

(3.1v9)

(3.154),

Hence, by (3.178):

MR 8, l (3.180)
(0=0, ,(0= D(l--_') l--v+a_ _"

The functions (3.180) describe the additional stresses due to the stiffening

rib. The total stresses are described by functions obtained by adding

(3.179) and (3.180):

MR 1
ch(_) = cp0(_)-{-qD (_) = 4D I -{- v_'

MR 61-- I -- v I
,t (_) = ,o (_) +, (_) = 2D (1 + 'v) (1 --v + 8B'"_'"

I

2

I

O/,6

0
4.3 5 tO f5 20

FIGURE 39

The bending moments in the plate are

M,=M 1 l+v

l--'vM,=M '4 i¥;

1 -k v -- 61 "'T/-
I --v+61

i +v--8, R')Jl--v+ 6_ Ti"

()M, and _ as functions of 6, for v= 0.3.
Figure 39 shows _ ,-R ,-R

(3.181)
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It followsfrom (3.181)thatfor b, = l-{-v throughout the plate M,= M_----M.

i. e., a stiffening rib of relative rigidity b, = I -F v prevents completely

stress concentrations in the plate.

If the stiffening rib has a rectangular cross section, then A=E,I, = E,bh_/12
and

E[ b(ht) 3A =_-'-g --K6,= I-Fv=_ (l--v_). (3.182)

For a given plate material (E. v) we can select arbitrarily (within the limits

of applicability of the above solution for thin beams ] 131]) two of the three

dimensionless factors in the right-hand side of(3.182), and determine the

third from this equation.

Torsion of an unbounded plate reinforced
around a circular hole

For a nonreinforced plate with circular hole under pure torsion at

infinity (Figure 40), we have /118/

o ttR 2 [ l--v/R _ _\ r"] . ^.l

iHR 1 --v ! I

q_o(_) = _ 20 (1 -- v--------_"3-t----_"-_ ["
iHR ! -- v I

'P(_)= 2--D(-l--v-----)[_ -3-t----v _-_] J

(3.183)

From (3.153), (3.154), (3.158), (3.170), (3.171), (3.175), (3.176), and

(3.178), we find

_HR 4HR .
go(o)= D(l __ v) (3 + v) a, Go(o)=--_---_-_o"

4HR at,
Go,(a) = -- _ 6o2(o) = ro = o

2iHR / 1

v, (0 = _ N-- _-, r = bl= o

IHR (1 -- v)(81+ 82)+ 66_82 I
cp(_)-----D(l--v)(3-i-v)(l--v)(3-}-v)+(5-pv)(6,+6z)+36,6s'-_

iHR 86,--4(I +v) 61+ 12616, 1
(_)= 2D(3 + v)(l--v) (l--v)(3+v)+(5+v)CS,+bs)+3_,6,'_T

(3.184)
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H

FIGURE 40.

Addition of (3.183) and (3.184) yields

l

T

iHR

_2,(_)= 2D (I -- v) X

[ l (l--v)'+(3--v)8,--(l+v)8,--36182 ]---_ (1 -- v) (3 + v) + (5 + v) (6, -5 62) -_- 36,8,

(3.185)

For complete elimination of stress concentrations inthe plate, it obviously

suffices that

(l-- vp + (l -- v)(6_ +62)--36&,=0 I.

(1 -- v) s -I- (3 -- v)6, -- (1 -}- 'v) 6.. -- 36L62 = 0
(3.186)

Solution of system (3.186) yields

8L=6,-----I--v. (3.187)

A rib, whose relative rigidities are givenby(3.187), causes the calculated

stresses in the plate to be minimum. Such a rib, and the corresponding

rigidities 6, and 8_, will be called optimum.

An optimum rib can be designed as follows, after the optimum rigidities

have been found: first, the shape of the cross section is selected. Next,

6, !,

the magnitudes -_, =2(i +v)[, ((2.32)) are tabulated for the chosen shape as

a function of the ratio of the two characteristic dimensions h, and b of the

cross section. From this table we then find the value of hjb corresponding

to the ratio of optimum rigidities 6fP,_6oPt. Finally, having selected the

material for the rib, we determine the absolute dimensions of its section

frorn

E,I. (3.188)
i _ "-_ -- •

This procedure will be illustrated by selecting the cross section for

case (3.187). Let the stiffening rib have a rectangular cross section of
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heighthtand width b. Writing

I n = elb4 ,

we obtain Table 14 for v=0.3/23].

1, _ %b 4, ( 3.189 )

TABLE 14

10 1001,01,,I,,
t

8_ 0,028710.0451 0.140 0.169 0.294

e I 0.01040.0180 0.08310,11110.981

_,/o, I"°5_lo.go_o._4____91o _io._o__

8_ nr

In our case, _ = 1 by (3.187). The corresponding value of hdb in

Table 14 is approximately 0.56. Replacing byRby R2(our method is based

on the assumption that this is permissible), we can represent (3.188) in the

form

81 ----_ El bhat El [ b \_ (0.56) 3
e _h_ (l--_,') = --_-_,-h-)•---_(l- _,'-)= 1--_,, (3.190)

R_

where R2 is the radius of the hole in the plate, and Q =-_- is known.

Let plate and rib consist of the same material. We find from (3.190)

for E = Ea : b = 1,44h_/'_. Knowing 0, we obtain first b, and then l,, from

_,= 056b= 0_lh_
The dimensions of the rib are thus expressed through the known thick-

ness h of the plate.

§ 9. SOLUTION BY QUADRATURES FOR

A CIRCLE

A circular plate is reinforced along the edge r=R by a thin elastic rib.

The origin of the xy-coordinates is at the center of the plate. The boundary

conditions on ¥ are by (3.156) and (3.157):

I* (o) -l- G (o) -- Go(o) = 8iD(r_ (o),

I l,(o)__G(_)+ao(O) --8--_- [q¢ (o) + o_ (o)l.
X

(3.191)

(3.192)

The same symbols are used here as in § 8. The right-hand side of

-(')(3.191) represents the boundary value of the function _ -_- , holomorphic

outside ¥, including the point at infinity, where it acquires the value 8iDa=

= const. (.a_ is the coefficient of t in the expansion of_(_); it is assumed that

g_(0)=0). The right-hand side of (3.192) is the boundary value of the

function _ [_' (_)q-_ ({)1, holomorphic inside ¥ and vanishing at g = 0.
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We again rewrite (3.154) in the form (3.158)

6 (a) = G, (o) OrF or 62 (_). Go (_) = G0_(o) -t- ro -t- G02(o)}. ( 3.193)
1" (o) = & (o) + lo +/2 ('0

Here G_(o), Got(a) and /l(z) are, respectively, the boundary values of the

functions Gl (_), Got(l) andll(¢), holomorphic outside Y and vanishing at
infinity; G.,(z),Go2(_) and 12(o) are the boundary values of the functions G_ (l),

ao2(_) and /2(_), holomorphie inside 7 and vanishing atl=0; F, Fo and /o are
constants.

! do
Multiplying both sides of (3.191) and (3.192) by 2ai o--_ and integrating,

alongy, the first expression obtained for Ill<l, and the second both for

[l]<l andl_l> 1, we obtain

12(t) °r/o or G2 (_) or F -- Go_o(._) -- 1'o = 8iDa,

1
----/l (_) + 61 (._) -- a0, (._) = 0,

X

_1/2 (_) +/0l -- 6_(_) -- r + G0,(_) + ro = -- Si_DDI_' (_) + l,_ (l)l.
X

(3.194)

(3.195)

(3.196)

Setting_=0in (3.194) and (3.198), we obtain

Io or F--l'o = 8iDa, lo--×P or XFo =--8iDal. (3.197)

Letting l-,_in (3.194) and (3.195) and taking (3.197) into account, we find

/a (o) = -- G_(o) + Go_(a), &(o) = x6, (?) -- ×Go1(a). (3.198)

This result is identical with (3.162). Furthermore,

4a dg' (_) =(lor-1-)l*(o)-t-(-c---l)l'(_). (3.199)RdO

which differs from (3.155) by the sign on the left-hand side, because 7 is

described in the opposite sense.

Proceeding as in §8, we reduce (3.199) to the following system of

equations, similar to (3.165) and (3.166):

l--v b 8
r + _ [( _ + ._)/0 + (81 -- 6,) i01 = 0, (3.201)

where 81 and 8. are defined by (3.164).
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From (3.197)and(3.201) weobtain

(l"_-V)61 82 ReFo ]Iml°= (l--v)(l-l-v+51)ImFo, Rel o I--v

Jl+v
Imr 1 + v + 6_ Imr0, Re r = Re Fo

as = 8 (1 -- "v)"D i_2 Re Yo + 1 + v -F 81 lmFo

(3.202)

We determine the functions G, and G: by substituting (3.198) in (3.200);
using(3.167), we obtain a system of ordinary differential equations

coinciding in form with system (3.168):

dGt F auGt + anO., = VI,
dO

dG_
d---'O-+ a21Gt + a2_G_= V2,

(3.203)

where

3+,,fl + _]

,,i-v,(i i)a,.=---y- K-'_,

an = -- i [ l -- T ,-_ +l-- v / l -_t)]

i(3+v, (i 1)a., = ----y-- _-_

(3.204)

(3.205)

The characteristic equation of system (3.203) has the form of (3.172);
its roots are

..l_¢L l . I-Fv/I__..F__LI'_]s..[ (l-- v)(3--Fv)[ I l _' L (3.206)

where _ and _2 are different and real. The single-valued solution of system

(3.203), obtained similarly as in the preceding section, is

Gl(o) = Y,, G2(o) = Y,, (3.207)
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where Y, and Y, are defined by (3.175) and (3.204) to (3.206). The functions

G2(a)=Y_ and _,(-_)=Y,,are, respectively, the boundary values of the funetions

(')G_(_)andG_ _ , holomorphic inside the unit circle, and are foundby

substituting_ for_. They have the form of (3.177), but with _1 and

ark (], k= 1, 2) defined by (3.206) and (3.204), and VI(_) and V2 ({) obtained from

(3.205) by replacing a by _.

We can express the unknown functions _(_) and _2(_) through functions

(3.177) by solving the second boundary-value problem (3.152), which, on the

basis of (3.193), can be written as follows:

_(a) -k a_' (a} -{- ,(a} = ]_-_(a). { 3.208)

where

F (a) = 2iD ( P-- v) 1 [G, (a) + r + a_.(o)- ao,(o)- ro- ao={O)]

The solution of (3.208) for a circle, with_(0)=0, is (]82], §80):

(3.209)

1 _ F (a) da(_)= -- E,_-- 2_=--_ (0)+ _-
¥

¥

(3.210)

where

a_ = _' (0), 2a, = _" (0). ( 3.211)

Differentiating _p(_)in (3.210) with respect to _ and settingS=0, we obtain

Re a, :

1 IF(a ) doax _t- aa _-_ "_ - o a

¥

whence

a,: F(a)---_-+iC,, (C, : C,). (3.212)

Y

Differentiating_(_)twice with respect to _ and settingS---0, we obtain

I _F da !¢
o,= j or (3.213)

We determine the constant _(0)in (3.210) by setting _----0 in the expression

for _ (_):

ISFd_ -- l_Fda_(0) =-_-_- -_---2a, or _(0)----- -_-_-j--_- --2a,. (3.214)
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Using (3.212) to (3.214), we can now rewrite (3.210) in the form

(_) 4ait_S _ Co)d.+ iC,; --
¥

l SFdo' + , J'F(e, de
¥ Y

¥ ¥

¥ ¥

do

Substituting for F-_ from (3.209), and setting

,,o,_,o__4°.(-)+,+o.(-)-00(_)-_0-0.(_)]
we obtain

i l

+ (_)= 2D(_-- v)[-_ cr, -- r); +

+,o(_)-_o(_)]

Jr _. 4D(l--v) Jr D(-_--v) -d_-Oo, _ ---_-G, T ;=o,

We have discarded the term iC._ in _(_), since it does not affect the

deflections and stresses of the plate. The problem is thus solved.

(3.215)

(3.216)

(3.217)

§ 10. CIRCULAR AND ANNULAR PLATES

OF MINIMUM WEIGHT

We have solved the problems of bending of plates whose edges are

reinforced by thin elastic ribs of different material. In this section we

shall consider the influence of the stiffening rib on the weight of a

symmetrically loaded circular or annular plate with reinforced edge,

conducting the strength analysis for maximum normal stress.*

Using polar coordinates (r. 8)with origin at the center of the plate, we

obtain from (2.51) and (2.52) along the joint r between plate and rib:

M, _, :l:(I-- V')M,. (3.218)
---_ 81

* The procedure can easily be adapted to other strength theories.
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Here and henceforth the plus and minus signs correspond, respectively, to

reinforcement of the inner or outer edge of the plate.

Hence, on F:

I <, for°,> I
(3.219)

The principal stresses a, a,, anda at the surfaces of the plate are

6M, 6Mo
a, = 4- --_-, % = t:--_-L,, %=0

The plus and minus signs correspond, respectively, to the lower or

upper surface of the plate.

Substituting these expressions in the formulas for the equivalent stresses

(cf. 11031, Vol. 1, p. 319), we obtain

6f(M,,M,) (3.220)
_eq = h a

in many theories of the limiting states of stress (maximum normal

stresses, maximum linear strains, total potential energy, energy of shape

alteration, etc.); here [(M,.M,) is some function of the momentsM,, Me.

Let the stiffening rib be of rectangular section with sides b and h_. The

maximum normal stress in the rib is then

__ [L. lhl E,Ih
eL"'-- 21 =_ [M,] r' (3.221)

bh_
where l_---_-and ]135/ L,=R(M,) r. Here Lnis the bending moment acting

on the cross section of the rib.

The cross-sectional area of the rib is

F = bhl = 121 ER 61 IP
h'--_ -= E,(l--v=) "h--_-" (3.222)

It is evident from (3.101) and (3.125) that the bending moments acting on

a plate are completely defined by the relative rigidity 61 of the rib. Thus,

when b, is fixed, the function [(M,.M,) is constant [for r= const.].

The following conclusion can be drawn from (3.220) to (3.222). Among

all reinforced plates of a given material and with a

given relative rib rigidity6, , the

rib) for which

a o _-_ k,

will be of minimum weight; here

0'max [a]
.__e%.. k---- --

a°----a" ' [a']'
illaX

structure (plate with

(3.223)
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where In], [o*]are the permissible normal stresses for the material of,

respectively, plate and rib, Oeq.max'zsthe maximum value of the equivalent

stress%q.given by (3.220) (]I03], Vol. I, 319).

To prove this assertion, we determine first a0. We find from (3.220)

and (3.221)

fro.(M,.M,).8, E h

a0 = IM, tr L'_(I--v'-')"h,---" (3.223a)

Consider the following two cases.

1) ao<k • In this case, according to(3.223a), increasing % to the

value k is equivalent to increasing the ratio h/h,. However, since 6, is given,

bh__.._= const, and for constant cross- sectional area of the rib (i. e., for constant
h3 h_

unit weight of the rib), F= bh. = const. Hence h'-_ = const. Thus an
h

increase in the ratio _ leads in this case to a reduction in the plate

thickness Z:, i.e., to a lower weight of the structure.

2) ae>k . At constant plate thicknessh, we can reduce the

ratio % to the value k by increasing h,, i.e., according to (3.222) by

reducing the cross-sectional area of the rib. Thus, a decrease inn0

leads in this case to a lower weight of the structure.

Thus, in both cases the structure is heavier than when a0=k ((3.223)).

For a given value of O,, when ao = k, the structure will thus be lightest.

We shall only consider the case whenocqiS determined by the theory of
maximum normal stresses. (Similar studies are possible for other theories

of limiting states of stress.

We also assume that the maximum bending moments in the plate act

along the contour reinforced by the elastic rib; this is the case in many

problems discussed in the preceding sections of this chapter. We then

obtain from (3.219) that on F.

I 61M'I

max__ {_ forOeq" -- Omax-_ 61M,[ for
I h*

(3.224)

Substituting (3.224) and (3.221) in (3.223), and taking (3.218) into account,
we obtain

h__= I(l -- v' 4- v6,)IkL (I -- v') for 61 < (l 4- v), ( 3.2 2 5)
h 181k_.(! --v') for _1_(1 4-_),

b /k').'bl(l--v')'/(l--v'-l-vS,)' for 61_(I 4-v), (3.226)

R- = (k'_.'(I -- v')'/6_ for 6.> (1 ± v),

where L m El
E "

Formulas (3.225) and (3.226) define the relative dimensions of a

stiffening rib of relative flexural rigidity _A, which fulfills the minimum-

weight condition (3.223).

Under the assumptions made here, these dimensions depend only

indirectly on the actual axisymmetrical load acting on the plate: when the
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maximum bending moments in the plate act along its reinforced edge F,

the relative rib dimensions corresponding to the ]ightest structure are given

by (3.225) and (3.226).

Figure41 shows themagnitudes(R):ks_' and _-kXas functions of

a= 6L (curves 1 and 2, respectively), for a rib reinforcing the inner
1 +v+61

plate edge; Figure 42 represents the same curves for a rib reinforcing

the outer plate edge. All curves have been plotted from (3.225) and (3.226)

for v _ 0.3.

/J

0.5

t5 _

')-
ft. i , 0.5

, 2%I

/" t5

-- -- IO
2,,

J'iI
I $

V
A

a35 o.5 d I o

FIGURE 41. FIGURE 42.

We shall now determine the relative saving _Q in plate weight obtained

through reinforcing the plate edge by a rib.

We introduce the following symbols: Q0, ho are, respectively, weight

and thickness of a nonreinforced plate under the given load; Q is the weight

of the reinforced plate under the same load; y, and _,_are the specific

weights of plate and rib, respectively; Ro. R_ are, respectively, the radii

b
of the reinforced and of the nonreinforced plate edge; R = R0 :i: _ is the

mean radius of the rib.

We have

qo= 4-=(_ - R2o)boy_ I.
q = _. (R_-- _o)by,+ 2=bR(h,-- h)_o

(3.227)

Hence,

AQ--_ Qe--Q I_[ _, (3.228)
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where

=_, n= , c=T
(3.229)

The ratios b/R andhdh are given by (3.225) and (3.226).

Since

0
where M,n,x is the maximum bending moment in the nonreinforced plate, we
obtain

We thus obtain a plate of minimum weight by selecting a, in such a way

thatAQ, defined by(3.228), is maximum.

Thus, for a plate with reinforced inner edge, supported on the outer or

inner edge, we obtain from (3.101)

IRA, _, r" -k I -7;'- r

(3.231)

The superscript "0" denotes the moments in the nonreinforced plate.

We assume that the maximum moments act along F. This is the case

in all types of loading shown in Figure 43.

FIGURE 43,
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Thus, accordingto (3.230)and(3.219),

e = for 8, (, +
Mmax --|(MO/M,)r for 6, _ (1 + v) J"

Since M°,=O on F, it follows that

drs -------g"-_" r'

(3.232)

(3.233)

and therefore on F,

R " d---_" (3.234)

Substituting (3.234) and (3.231) in (3.232), we find

[ A,/('q' -- 1) (l -- V"_J¢-VS,)

¢' = If or 8, _ (1 --}-v),
] A,/(q' -- 1)8, (3.235)

tfor 8, _ (14- v).

We obtain similarly from (3.125) for a plate rigidly clamped at its outer

edge

¢_ I(l -- v') A../(I--v'-F_5_) [1 -k v d- _' (1 --_)] for 8, _: (1 -F v),
----l(l-- v_A**/[ I_ v -I-q' (I-- v)]Sxfor 8t:>(I"-l-v). ( 3.236)

Substitutingc from (3.235) or (3.236) in (3.238), and taking (3.225) and

(3.226) into account, we can plot AQ as function of 8,. For the above example

(withCgivenby(3.235)), this has been done in Figure 44,awhere AQis

8,
given in percentage as function of ,,-_ (l-p_+5,) " The following values

were used: v =0.3, y =k=), = l (rib and plate of the same material).

Obviously, a should be selected so as to obtain AQ; the corresponding

values of b/R and hdh (cf. Figures 41, 42) must lie witnin the limits for

which the stiffening rib can be considered as thin.

If these limits are -_-_:0.15 and <5, we find from Figure 41:

0.64_a_:0.78, i.e., 2.35_8_:4.55. When the inner edge of the plate is

reinforced by a rib of the same material, we find from Figure 44,a that

the maximum saving possible for this range of variation of a is aQm,_ = 25.4%,

the minimum saving being AQm,, = 19.4% for q _ 2.
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§11. AXISYMMETRICALBENDINGOF A CIRCULAR
OR ANNULARPLATE REINFORCEDBY SEVERAL
CONCENTRICRIBS

An axisymmetricallyloadedcircular homogeneousannularplateof
constantthicknessis simplysupportedalongr = 0 and reinforced along

r = R/ (] =0, 1, 2 ..... n),by several concentric thin elastic ribs (Figure 44,b).

For R0_ r _ R_ the deflections are assumed to be

(r') C, ln_-l-w*, (3.237)wl(r)=C,+C, _--1 +

where uP is the basic deflection of the nonreinforced plate under the same

conditions of loading and support. The functionw°(r) is assumed to be known.
For RI < r _ R, the deflections are represented in the form

'x=(r)=w,(r)-I-k, -- 1--2In , (3,238)

where k_ is a constant to be determined from the condition that the two

plate domains are joined along r = Rl In the case considered, the last

three conditions (2.368) are satisfied autornatically, while the first becomes

dw, _ D d2
61 ---d/- 7- ,,, _ (w, -- wl) = 0 for • = RL,

A,
where 6, = _ is the relative flexural rigidity of rib /91.

and (3.238) in (3.239), we obtain

1 (dw,_
k,= T R,8,_ dr j,:_,"

(3.239)

Substituting (3.237)

(3.240)

We find by mathematical induction that for Rt-,_: • < RI (] = 1, 2, 3..... n)

the deflections can be written in the form

!w,,,c÷c( 
1--1

ttl0

(3.241)

where

[ dw, _ As
O,=0, O,=R,_ dr ],-nk' k>0. 6,=Tk D . (3.242)

Substitution of (3.241) in (3.242) yields the following recurrent formula for

the constantsO k (k> 0):

4--t

E.oor., ,)O, = Rk_ k + c, + _ O2 + _ R2, - ,
t=0

(3.243)
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where

Setting

d_

1
rntl -----_ (-_--1) 8.

we can rewrite (3.243) in the form

k k

with

rnt/---- ! forifk.

Rearranging terms in (3.246), we write

1
0,#, = no, + al,Cl + a,,C,,

where

k k k k

balk = T rn_/, a_ = m_l --_
-- I-- I--_+l

, k k

Using (3.248), we write (3.241) in the form

k=,o

(3.244)

(3.245)

(3.246)

(3.247)

(3.248)

(3.249)

(3.250)

where

d_.(r)=_--1--21n_.

The constants Ca. C1 and C, are determined from the boundary conditions

for r=Ro and r=R=Rn, and from the support condition

w,=O forr=(h (3.251
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where s is the ordinal number of the region in which the support is located.

Substituting (3.250) in (3.251), we obtain

i_--I

C, = -- _, (aok+ a_C1 + a,kC,) @j (_). (3.252)

k,-0

Two of the four boundary conditions (2.366) and (2.367) are satisfied

automatically in the case considered, and only the following remain:

(0, + v)-_ ----0forr--R

dw _ d_

(80-- v) _ -- Ko --_ = 0 for r = R0J

This yields the equations

(3.252a)

alC, Jr blCs Jr dl = O[ (3.253)

aIC, "}- b_C, -{-ds = Ol '

where

a--i h k

aa == 2--_- (1 -I- v -{- 8n) -{- m_kA,,k
m j=i-t-I

a-.l k k

r.--- I k It

8 1

d' = RY. . _ -2 _.o _.l j=_+, moS'A'*R'¥'

as = 2 (80 -- v -- 1) Q..__ bs == 80 -- v -{- !, d, = RoYo

a.it = (6. + 1 + v) _-- (8. -- 1 + v)

(3.254)

with A,, =O for k =0.

The solution of system (3.253) is

d,a, -- d,a, dtb, -- dtb, ( 3.255)
C, = atb,-- b,a, "' C4 = a,b, -- b,a,

The problem is thus solved. Knowing the coefficients (3.255) and (3.252),

we can determine the deflections and, by (1.19), the bending moments at

any _,oint of the plate. We present some examples:

1) A solid circular plate is reinforced by thin elastic ribs (Figure 44,c).

This problem is solved easily, setting R0==0 and C,=0 in the above formulas:

j-i

wl(r)=mo-{-Cs._-C,(r_s--l).._ E(aok _- G4kC4) _)k(r). (3.256)
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where

s_l

64 = --al'dl 65= -- Z (@[0k "_ c[4k64) [I) k (Q)"

k_0

(3.257)

2) A circular annular plate with concentric ribs is rigidly clamped along

r=Rn-_R(Figure44,d). Letting bn"*_ and writing Q=R in (3.255), we
obtain

_;_'_-d:; d_b',--d:'_ <3.256)
c, olb',--b':';c,= _',b'_--b',o';

where

n_l k k
R2 R_

, (R,)
k_Oi_l]_i_l

n--| k k

2 l)
k_Oi_l]=i+l

R 2

. (3.259)

From (3.252) we find

n_l

C3 -._ -- _, (aok -t- alkCl -t- a4kC4) q)k(R) -
k,=,0

(3.260)

The deflections _J (r} are given, as before, by (3,250), where w0 is the

deflection of the nonreinforced plate hinged along r = R • and must be

replaced byR. If _0 is the deflection of a nonreinforced plate clamped at

the edge, we must set Yn=0 in (3.259).
3) A solid circular plate reinforced by ribs is rigidly clamped along

r-= R n -----R (Figure 44,e). In this case the deflections are given by (3.256)

for Q = R,, while the coefficients C8 and ¢4 are obtained from (3,257)byletting

0n -* _and writing Q = R:

C3 = -- _' (ao_ + a_kC4)Ck (R), C4= , i

Z,=d a I

k_O

(3.261)
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4) A circular platereinforcedby twostiffeningribs is hingedalong
r=R(Figure 44,f). Substituting in (3.256) and (3.257) 0=R ands=n=2,

we find for 0<•_R]

(r) = wo -I- Cs -1- C.

for R, < • < R

where

81
C3 = -- T (RIYi nu 2_I_-2C4) (TI_-- I --2 In TIt)

81RiY I [(82 --}-v -- I) -- _l2 (82Jrv-{-I)]-- 2R82y 2
C4=

4 (82 + v +I )+281Tl] -2 [(82 -{- v + I) Tl2- (52 + v -- I)]

R

(3.263)

Solutions for several cases of axisymmetrical loading of a circular plate

with two stiffening ribs were obtained in /31/ by a different procedure.

Formulas for the deflections can be easily derived for many other

particular cases.
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Chapter IV

PLATES REINFORCED BY VERY THIN RIBS

§ 1. STATEMENT OF THE PROBLEM

Problems on the reinforcement of plates along the edges of holes have

been solved (cf. ]8, 34, 114-118, 122-125, 187]) under the assumption

that the rib, of a different material, which reinforces the edge of

the hole is so wide that its stresses and strains can be analyzed

according to the two-dimensional theory of elasticity or by the equations of

bending of thin plates, depending on the type of load applied to the plate.

This assumption is invalid if the stiffening rib is very thin or has an

irregular profile. In this case the stiffening rib should be considered as a

thin curved bar whose strains are described by the theory of small

deformations of thin curved bars.

Sheremet'ev (]180--184] 7 derived the boundary conditions for a plate

having a rib of uniform cross section welded around the curvilinear edge of

a hole. He considered the stiffening rib to be a curved bar, possessing

either tensile and flexural rigidity in the case of a generalized plane state

of stress, or flexural and torsional rigidity in the case of bending like a

thin plate.

Solutions were obtained quite easily in problems on the elastic

equilibrium of plates having circular holes with edges reinforced by thin

ribs. The analysis of plates having holes with curvilinear (noncircular)

reinforced edges presents, however, considerable difficulties (] 71-74,

186-188]). It is therefore advisable to simplify the formulation of the

problem.

Following ] 153] and ] 159]we derive below approximate boundary

conditions for the joint between a plate and a thin curved elastic bar of

variable cross section, made of a different material. It is assumed that

the bar axis P lies in the middle (xy)-planeof the plate, and that contact

between bar and plate takes place along the cylindrical surface S which

passes through P and is normal to the(xy)-plane. WhenPis described in

the positive sense, the domain of the plate lies to the left.

Instead of requiring the exact fulfilment of all conditions of joining, we

require that the following conditions only be satisfied on S:

I) The forces and moments, per unit length of F, acting between plate

and bar satisfy Newton's Third Law.

If) The strains _, and e0 of fibers, respectively of the plate and of the

bar, equidistant from the xy-plane are equal.

In addition the stiffening rib is considered to be so thin that the following

assumptions can be made:
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1) In thecaseof bendinglike athinplatewecanneglecttorquesacting
ontherib crosssections,i.e., weassumethattherib possessesonly
flexural rigidity, andthatoneof theprincipalaxesof inertia of therib
crosssectionlies in the xy-plane; the Z-axis is directed downward

(Figure 45).

Y

4

X

FIGURE 45. FIGURE 46.

2) In the case of a generalized plane state of stress we can neglect

bending moments acting on the rib cross sections, i.e., consider the bar

to be an elastic line possessing only tensile or compressive rigidity*

(Figure 46). We shall derive below the approximate boundary conditions

corresponding to these assumptions.

§ 2. BENDING OF A THIN PLATE. DERIVATION

OF THE BOUNDARY CONDITION FOR THE

REINFORCED EDGE

Conditions I and Ifof the preceding section are written in the following

form for a thin plate:

' l( ; i
o

e,=e o for all ZonS, (4.2)

where M.. H,,. N, are, respectively, the bending moment, twisting moment,

and shearing force acting in the plate along F per unit of its length; m_ and

Pl are, respectively, the bending moment and the shearing force with which

the plate acts on unit length of the rib; t=x+ig is the affix of a point on .

s, s_, s_ are arc lengths measured from the origin 0;t = dt--_-; , is the

outer normal to F.

* It was shown by Sheremet'ev/184/ that the flexural rigidity has in this case only a small influence on the

stresses in the plate.
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Proceedingfrom theequilibriumconditionsfor part 0s of the rib,

assuming that n6 torques act on the rib cross sections, we obtain from (2.22)

for L, = 0 :

I ll

"";---S[m(s,)--,J'p(,,)e,,C_,,+,cr-c'. (4.3)
g

where

m (s) = -- m* + m,, p (s) = -- p* + p,, (4.4)

m* and p* are given external bending moments and shearing forces acting on
the ring; L, is the bending moment in section s of the rib; C' is a complex

constant; C is a real constant.

In addition, we can express the strains So and ¢_ by the known formulas

of strength of materials (/2/, p. 265) and of the theory of elasticity

(/61/, p. 17):

_o= ZLd A, (4.5)

au., Ov .,+(au + _; (4.6),,=--&--;+Wy [_ -_--) ,

where u. v are the displacement components in the x- and y-directions;

A = Ed is the flexural rigidity of the rib (variable in the general case); El

is Young's modulus for the rib, ._ =__.___.._._dx-- dg

Substituting (1.1), we rewrite (4.6) in the form

Z O_v _ 02_ -- 0_ :,
.... 2--_-_ x Y + Tg._ y . Re [ t -_-F (-_- -- i O" ' ]-_} j[T, _ + ] . a _ z. (4.7)

Using (4.3), (4.5), and (4.7), we eliminate the unknown right-hand sides

of (4.1) and (4.2) and obtain a single approximate boundary condition in

complex form for a plate with reinforced edge:

d &v
(4.8)

where

is known.

1

P(s) = --_ (rn* _ -"-- l _ p*ds_) t dsl.

We write (eft (1.23)):

_, = 2Re _ (z) + X (z)] + _ (x, y),

(4.9)

(4.1o)
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where_(z)andX(z)areanalyticfunctionsof thecomplexvariablez = x + iy;

v2(x, y) is any particular solution of the equation (cf. (1.13/) AAw=¢/D.

The terms on the left-hand side of (4.8) can be expressed through the

functions ¢p(z) and_b(z)=_X(2)dz in accordance with (1.65) and (1.76). We then
obtain instead of (4.8):"

+ _ (0 -- t_' (0 --* (t) = h (0 + _cf-- c;, (4.11/

where x=(3+v)/(l--v);v is Poisson's ratio; _, C_ are, respectively, real

and complex integration constants;

1

il(t) = 2D(1--'v) [l°(s)--I°(s)] -t-

irA

+ 2D(I--v)

o o

r ah_ o 2 0zav° • 2
mo =--D {vAw°+ (I--v) l-_-£x2COSO+-_sm

+ 2--_--cosO sin 0]}

+ o--_-y

0+

cose sin O+

(4.12)

0 is the angle between the normal n to P and the x-axis.

The degree of determinacy of the functions _0(z) and _(z) is obviously the

same as in the first basic problem of bending of a thin plate.

In the case of axisymmetrical bending the boundary condition (4.11) is

exact, since the twisting moments in the rib sections vanish identically.

The normal stress in a rib section is a ° = E,%.

§3. GENERALIZED STATE OF PLANE STRESS.

DERIVATION OF THE BOUNDARY CONDITION

FOR THE REINFORCED EDGE

Conditions I and II of § 1 become in this case:

(X n + iYn) ds = -- (X o + iY °) ds on F,

o

(4.13)
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e,=_oOn F, (4.14)

where X,, Yn are the stresses with which the rib acts on the plate along F;

X o, yo are the projections of the forces per unit length of rib axis with which
the plate acts on the rib; h- is the thickness of th_ plate.

Assuming that no bending moments act on the cross sections of the rib,

the equilibrium condition for part Os of the rib becomes:

s

- _ (x: + i_'_as = i Ipx+ iP_)ds+ Ni- c3,
0 0

(4.15)

where Nis the normal tensile force acting in section s of the rib; C_ is a

complex constant; Pz. Py, are the projections of the given external load per

unit length of the rib axis.

We have, in accordance with(4.6),

(4.16)

Using (4.15) and (4.16), and noting that

eo = N/EIF, (4.17)

(E, is Young's modulus for the rib; F is the cross-sectional area of the rib,

variable in the general case), we eliminate the unknown right-hand sides

of (4.13) and (4.14), and obtain the following single approximate boundary

condition for the plate:

We can express the left-hand side of this equation through the functions

9(z) and _(z) (z = x + ig), holomorphic in the domain of the plate (/82/,

pp. 113-114):

(t)+ t_' (t)+ _ (t)= -- i S (x. + iY,,)as + const
0

a,q_(t)-- t_o'(t)-- _ (t) = 2_ (u+ iv)
t

(4.19)

where t is the affix of a point onr; _ = E/2(I +v) is the shear modulus;

E is Young's modulus for the plate; xt = (3--v)/(l + v); v is Poisson's ratio.

Substituting (4.19) in (4.18), we arrive at the following boundary-value

problem for the functions ¢_(z) and $(z), after introducing complex conjugate

magnitudes:

iE,F2_htRe li-_[u,_(t)--t_p' (t)-- , (t)]} +

+,p(t-_ + r,_'(t)+ _,(t)=I,(0 + const on I", (4.20)
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where

I:(t)= -- hi (Px-- iPv)ds. (4.21)

The degree of determinacy of the functions (p(z) and _(z) is the same as

in the first basic problem of the two-dimensional theory of elasticity.

0 Ele 0 in the rib are by(4.14), (4.16) and (4.19):The normal stresses o, =

%- -_-(I + v)Re i-_[x,cpCt)--t_'Cl)--¢(t)l . (4.22)

The problem considered here was solved in ]212] by reducing it to a

more involved boundary condition. An advantage of (4.20) is its similarity

to the approximate boundary condition (4.11) for a thin reinforced plate.

The methods of solving these problems are therefore also similar.

§ 4. UNIFIED CONTACT PROBLEM WITH

APPROXIMATE BOUNDARY CONDITIONS

By adding the boundary conditions (4.11) and (4.20), corresponding,

respectively, to the bending of a thin plate and to the generalized state of

plane stress of a thin plate, we obtain the following boundary-value problem:

iKtRe l "t--_ la_cp(t) -- t_' (t) -- * (t)]} +

-t- a,,_ (t) -{- t_p' (t) -? _ (t)= aJ, (t) -- iC'xT+C' 2 on r. (4.2 3)

In the case of bending of a thin plate,

3+v A
al= l--v' a2----aa=--l, K= D(l--v) <0, (4.24)

while the function fl(t) is defined by (4.12).

For a generalized state of plane stress,

• E_F
3--_ . a,=l, t_ =---_- > O, C;=O. (4.25)a_ = 1, a_ = 1+-----4" '

the function [_(t) being defined by (4.21).

In (4.23), F denotes the contour along which the thin plate is joined to a

thin rib whose properties are defined in § 1; K = K(t) is a real function of

the point t on F, which depends on the relative rigidity of the stiffening rib.

The function K will sometimes be simply called rigidity.

Rewriting (4.23) in complex conjugate magnitudes, we obtain

--IKtRe{td[a,(p(t)--t_'(t)--,(t)]}-{- a,,(,,-b'_-[- _ ='o (t)on I'.
(4.26)
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where

Setting

to(o= _]-T(i)+ ic',t + _.

o (O= t _ ' (t) + ¢(t).

we rewrite (4.26) in the following form:

-__.d --Utt)l} +i_la/pff) U(O] i_o(0.K Re i t Ia,_ (t) + ---

Equating the imaginary parts on either side of (4.29), we obtain

Im {it [a,_p(t) + U it)l} = Im {/t_o (t) },

or

whence

ittalq_ (t) + 0-_)1 + ii [al_-) + U (t)] = 2/Im [fo (t) itS,

utt) = -,,,_ (t)_- _,,Pit) - _,u(t)+ _xm{roq)tfi.

Differentiating, we obtain

to--2a; i0--o,6,

a it"I,,[i_hif)l}.

We rewrite (4.29) as follows:

+ 2 [a_qo(t) + U tt)] = 2to (t).

Substitution of (4.32) in (4.33) yields

a,at t,)(P i0 + at (I)U (t) -- at (t) [ _d----(p(t)+i' _ _-_]----,. t0.

where

at (t) = 2 (I -- iKt t),

at (0 = iK (a_ + a2),

f.(I)----_o it)-- 2iKi"d [-_Im {Io(t)/t}I= 21,(/'---)a°--

- _Ki,,,,_ Ibmv}1,(01}+ ,,=(t)(g+ _c;o.

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32_

(4.33)

(4.34)

(4.35)
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Since

i (;+ ,;J)=T A.
0

where e =0(t) is the variable radius of curvature of F, we have

(4.36)

where the sign before the last term is determined as follows:

TABLE 15

Type of problem

Bending of plate

Two-dimensional Region occupied Sign

by plate

Exterior of I' Upper
Interior of F Lower

Exterior of I' Lower

Interior of I' Upper

Substitution of (4.28)in (4.34) yields

u_ (t) [al,l_ (t) q- hi,' (t) -I- _ (t)] -- as (t)t top' (t) -F ?'(t)] = [. (t) on r. (4.37)

This is the transformed approximate boundary condition of the unified

contact problem. When the plate edge is not reinforced, i.e., when K =0,

we have a_(t) = 0. a..(t) = 2 , [,(0 = 2[0{0, andwe obtain from (4.37) the boundary

condition for the first basic problem of the two-dimensional theory of

elasticity.

We write the unknown functions ? (z) and ,(z) in the form

(z)= _o(z)+ _, (z), _ (z)= xp°(z)+ _, (z), (4.38)

where (p°(z)and *°(z) represent the known solution of the problem for the non-

reinforced plate edge (K =0); ?,(z) and ,p,{z) are unknown functions,

characterizing the influence of the stiffening rib, which are holomorphic

everywhere in the domain of the plate.

Substituting (4.38) in(4.37), we obtain the boundary condition onF:

where

a 2 (t) [ate. (t) +t(_: (t) + _.(t)l -- a_ (t)il,p: (t) + ,p:(t-"-)l= f..(t), (4.39)

I.. (t) = 1, (t) + % (t) il+o"(t)+ +o.(t)l -- h (t)a+(t) =

= iKi {2t'/,(t)a3- 2ani _ (tim [i_/T_]) + (a_+a,)2Re,_°'(t)}. (4.40]

We have thus obtained the following boundary-value problem: it is

required to find two functions ¢p.(z) and _.(z), holomorphic in the domain of

the plate and satisfying (4.39).
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If the plate occupies the exterior of contours F which have no inflexion

points, then, according to Table 15 and (4.24), (4.25), (4.36), a2(t)is always

positive and vanishes nowhere on F.

For an unbounded plate with holes having reinforced edges, (4.39) becomes

al_. (t) + t(p;(t) + %Ct)-- _ Ct)[,_:(t)+ ,e.(01= t (t), (4.41)

where

_ l.. (t) a (t) = ilk (a, "1-a,) 0
! (t) - a--_-_-' 2(0 _: K)

General case of plate reinforcement by

stiffening ribs

If the stiffening rib is located inside the domain of the plate and not at

its edge, the magnitudes M,. N,. H._,Xn and Ynin(4.1) and (4.13) represent

the jumps, whencrossingF, in the values of the corresponding moments

and forces acting on the plate.

Conditions (4.2) and (4.14) become

Co---_+ = *_-onr. (4.42)

The superscripts plus and minus designate the magnitudes, respectively,

to the left and right of F.

We introduce two functions ?(z) and $(z), piecewise-holomorphic in the

domain of the middle plane of the plate and discontinuous across P.

The approximate boundary conditions are then on F (by analogy with § 8 of

Chapter II):

lKtRe { i-ff-_ [a,?+(t) -- t?'+ (t) -- $+ (t)l} +a_-_(t) +

-t" t_'+ (t) "t-_+ (t) = all-(t) + t_'- (t) + _- (t) + [2 (t), (4.43)

Re{i d [a,,p+(t)--t,V + (t)--_+ (t)l} = R'e {i--_-s [a..,,r(t)--

-- 7_'- (t) -- _- (t)! ], (4.44)

where

t.(/)---- 2D (l-- _)

for the case of bending like a thin plate (w ° is the solution at the same load,

with no stiffening ribs), and

(4.46)
t./
@
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for thetwo-dimensionalproblem. Thevaluesof a,, as, K are given by

(4.24) and (4.25).

§ 5. SIMPLY CONNECTED DOMAIN. BOUNDARY

CONDITION IN THE MAPPED DOMAIN

We map the finite (or infinite) domain (_f the plate, limited by the simple

closed contour F, on the interior (or exterior) of the unit circle y in the

plane of the complex variable _ = Q,e _l = {_,a with the aid of the function

z=0_(_). Wealso write (cf. (4.38))

(4.47)

We have on F:

_= . . o)'(a) d 1 d :hi° d
•+ ta i---_ l , d-_-= -4-l¢o,(a)ide----i,(a)ida (4.48)

(signs according to Table 15).

Using (4.47) and (4.48), we transform (4.47) into

where

--a,(o) _ _j=f,(a) ony,
(4.49]

hCa)=/, [o,(o)l, ,1,(a)= i(a, + a,)Ki,

a,(a)= 2(I T K ) = 2(I__iKi _. (4.50'

According to (4.12) Is(a) is a known function of the point a=e I° on,/. Due

to the known indeterminacy of the functions fp,(._) and _},(_) in the case of a

simply-connected domain, we can in (4.35) equate to zero the constants

C', and C_ entering in (4.27).
We write

_,(0= _o(_)+ _(0, *, ¢)= *o(_)+ *(0, (4.51)

where q)o(_) and %([j) represent the known solution of the problem for the

plate with nonreinforced edge (K = 0), and the functions (p(_) and _(_), which

describe the influence of the stiffening rib, are holomorphic throughout the

mapped domain _ corresponding to the plate (i. e., outside or inside the

unit circle). Boundary condition (4.49) then becomes

"(°) =a,(o) [,-,,,_(o)-F_¢(o) + ['P:(") ' q"(') ]

= I, (°) on %', (4.52_
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where

I<(o)Jr (_;(_) ] a, ((_)fo [,O(")]. (4.53)
h to) = £. [toff')l+ a, to) I_ (o'to) ] --

When no rib is provided (K -- 0), we have l_ (a) = 0'. If the plate occupies the

exterior of F, then a_(o) _= 0 everywhere on ¥, and it becomes more convenient

to write (4.52) in the form

( s

a,(pto) + _ (p'(.) + _- . 'Lo_';q;7
(0 to)

where

_-Y_] (4.54)+_ =I on¥,

i= " fl(o) .-- , a((J) = i(al+o:)K't.._.. (4.55)

2(1 -- iKt t) 2(! --igtt)

In order to express a((0 in (4.55) through 0_((,), we find from (4.48)

;_ t" = 4- 2 to'Co)I (o' (o) l _-; " _--__J "

Substituting (4.56) and (4.48) in (4.55), we obtain

(al Jr a_)o_' (o)
Q(o)= { I(o'to)l\ o)'(o) d o)'(o)

(4.56)

(4.57)

Influence of a moment-free ring on the stress
concentration near a circular hole in an

inhomogeneously stressed plane field ] 153/

When F is a circle of radius R, we have z=t0(_)=R_. The known

functions 90(_) and _?0(_) , which describe the stresses in an unbounded solid

plate, are represented as polynomials of the m-th degree:

k--I A_O

where A, and Bk are generally complex coefficients.

For an unbounded plate with a circular hole of radius R, whose edge is

reinforced by a thin elastic rib, we represent, in accordance with/122/,

the unknown functions (_1(_)and _h(_)in (4.47)

*=1 •

.,+2
(4.59)
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Weassumethatnoexternalforcesact onthehole, i.e. , ]l(t) = 0 by (4.21).

Substituting (4.59) in (4.49) for [3(a)=0, and equating the coefficients of

equal powers of cr= e _', we obtain the following system of algebraic equations:

12+ 6(I + k -I-kxi-- xl)]a_(,_l)=

= l(x_- I)5-- 2](k-F I)A,+_- 2(I + 6)Bk_,

{5-ck+u = ka-(k-,) + kA-k+l + B*-I

(k= 2,3 .... m+D

(4.60)

and, in addition

(1 + 6)p_ 2 = (xl6 -- I)A 2,

(1 + 8)I__l =fix,-- I)5 -- 2IA],
(4.61)

where

6 = ElF 3-- v
2phR' xl = 1 + v"

p_

q
ttttt}_}t

itllltlti
q

FIGURE 47.

_P

The coefficients a-_,-i) and __(,+,) (k=2, 3..... m + 1) in (4.59) are uniquely
determined from (4.60), and the problem is thus solved.

In the particular case of plane tension (Figure 47) we have

(4.62)

where p= o (') = const and q= 0(_)= const, are the stress components at
• " U

infinity. We then obtain from (4.60) and (4.61)

1-t-6 1)8--2 }

a_=='2 _{_(xi .F 3) 5"(P-- q) R, I__,='(x_'_ _1-_ (P--Fq)R

2 + (l --uz)5 (p--q)R
J3-3= 2 + (xl + 3)6 2

(4.63)

All the other coefficients in (4.59) vanish. Writing 8= 0, we obtain the

solution for a plate with a circular hole, having a nonreinforced edge.
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For 5----co we obtain from (4.63) the solution for the case when the

edge is reinforced by an inextensible moment-free rib:

(p--q)R R --(P"}-q)R(xt--])}

u, 4" 3 ' r-,-- 4 J"(p - q) R (! -- ×,)
_-a 2 (x, 4- 3)

(4.64)

As ought to be expected, this result differs from that obtained for a

perfectly rigid washer welded into the circular hole(/ll8], p. 287).

TABLE 16

According to

Equation (4.59)

/1151

/18tl

• 538 ]13o, I""l'.660

I .12 1.57

b

k_R_ b

I [ i I

_- ] _" ]--_

I
2.387 ] 2.585 2.771

2.349 I 2.569 2.7762.35 -- --

It is interesting to compare the stresses found for different assumptions

about the stiffening rib. Table 16 gives values of the relative stresses

{/e

-- at e = 2' arising in the plate along the joint with the rib (r= R). TheseP

stresses were calculated t'or the case of monoaxial tension (q=0) of a plate

reinforced by a rib of rectangular cross section whose dimensions are

2Elht b
2b×2hl, with --_-_-= 1.833, x_= 2.08, 6= 4.7658 R-for different values of

b

k= R--_" For comparison, Table 16 contains also values of a e taken from

/115] and /184[.

In ]115/ the stiffening rib was considered as an annular plate whose

stresses satisfy the equations of the two-dimensional theory of elasticity,

while in /184/ the rib was assumed to be a thin bar possessing tensile

and ¢_ ....liex., al rigidity.

1
It is seen from Table 16 that fork (-_--, the values of o0, obtained for

a moment-free rib, differ by less than 5% from those obtained in /1151 and

] 184/.

§ 6. PLANE WITH ELLIPTIC HOLE HAVING

A REINFORCED EDGE. SOLUTION BY

QUADRATURES

We map the domain of the plate (the exterior of an ellipse) on the region

]_]> l, i. e. , on an unbounded plane having a circular hole. The mapping

function is

z---- _(_)=R (_ -4- _-) (R > 0, 0 -<: m < 1). (4.65)
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The unit circle corresponds to the ellipse y whose center is at the origin

of coordinates, and whose semiaxes are

a=R(l-{-m), b=R(l--m).

We find from (4.65)

m(a) 1 a'--}-m m'(o) = a'(l--mo i)

_o'(_'--) a I--too'' _' (o) a'--m

d_[ l 2m(o'--2mo'+,)o
dol,o(o)I = -- (o'--m)'

R (o'--m) . _'(o) o'--m
e'(o)--. o_ , co'Co) = }:(I--too')

4.66)

Substituting (4.66) in (4.57), we obtain

(a, + a_)R (o' -- m)' (too' -- 1)8 (o)
= (o) = 2o [too' -- (l + m _)o_-- (1 -- m2)o'8 (o) + m] '

(4.67)

where

and

le'(o)l = RV 1 + m2- 2tacos20. (4.68)

The polar angle 0 is measured on the _ plane from the end of the large axis

of the ellipse.

We shall henceforth assume that 6(o) is a rational function of o.

Expressing 6(o) in various forms, we obtain different laws of variation for

the rigidity (A orEiF) of the stiffening rib.

Consider some examples.

i) 6(a)=b0=const>0. By (4.24) and (4.25) the flexural (or tensile)

rigidity of the stiffening rib is in this case directly proportional to the

modulus of the derivative of the mapping function

a=O(l--_)lw'(a)l¢_ or EtF=2_Io'(a)I6_ (4.69)

These expressions become maximum at the end of the small axis, where

[co' (o) I = a, and minimum at the ends of the large axis, where Ira' (o) I = b.

Therefore, the ratio of the extreme rigidities of the stiffening rib

equals the ratio a/b of the ellipse semiaxes.

Obviously, a hole whose edge is reinforced by a rib of variable rigidity

should be located in such a way that the rib has its maximum rigidity at

the points of maximum stress concentration in the nonreinforced plate.

Thus, when a plate with an elliptic hole is tensioned, the large axis 2a

should lie in the direction of the tension. In this case the cross-sectional
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areaof thestiffeningrib shouldbea/b times larger at the ends of the small

axis of the ellipse than at the ends of the large axis. The variation of Aand

1
EzF((4.69)) is shown in Figure 48 for m -----_-, i. e., a-= 2 b.

TABLE 17

fKI
0, R_- for cases

dcg.
I I 2 I 3

1--rn 1_ 10 _

__ __ 1/F+m '

4s W+m, ,/¢1+,.. i_,

90 ,+m ir_- I ,

y

HGURE 48.

2) b (a) = a'bo/(a _ -- m) (1 -- rna2), where _ = const. > 0.

In this case

_' I _' (a) I do RSoIKI =
(a n -- m) ( 1 -- man) --- I/1 + m n -- 2m cos 20 '

(4.70)

Hence, the rigidity of the ribbecomes maximum at the ends of the large

axis and minimum at the ends of the small axis. The ratio of the extremums

is again equal to a/b.

3) 8(a)=4o_e/[(1/_--il/Tq-m)a2q-(I/_+i]/qq_ra)]n" We have then

=. 4_' I o' (o) I d_o
Igl [( IV_--m--il/l-Fm)a'-l-(Vl--m-l-il/l-l-m)l_=

I= R'_ ]/ l "{- m'-- 2m c°s 2e (4.71)

1 -- m co6 20 + I/'| --m' sin 20

where

8o = _onsf > O.

The rigidities A or E,F ((4.25) and (4.24)) are in this case equal at the ends

of both axes of the ellipse.

Table 17 gives the values of IK[/R6o as function of the polar angle 0 for

these three values of 6(o}.

We may also assign other values to6(o), remembering that, according

to (4.24) and (4.25), _(o) is a real function of constant sign.

We shall henceforth only consider the first case, when 6(o)= 6. =const > 0.

The functiona(o) given by (4.67) will then be the boundary value of

(a, q- a_)R (_= -- m)'- (ra[" -- 1)8o

¢t(_) = 2[Im['-- (1 + m')_2--(l -- m2) [_6 -t- ml "
(4.72)
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1

To find the zeros of the function _ we solve the equation

_(_) = m0-- [(1+ rn2)+ 8(1 --roD1;_+ m = 0 (4.73)

and obtain

1 I / "xs'"x l+mJ]_t=_ (I +mt)+(l--m_)804-(1--mt)× 1 -r ,,0-r ,,,0 l---_-_m_ . (4.74)

Hence, the points_¢ (1_ i, 2,3,4), atwhichthe function& becomes zero,

lie on the real axis:

l

/ _ .,.o_ l+m,X (I + m_) + (I --mt)Su + (1--rn _) ! + uo_uo.--i--_-_- ,

l

_,= -_= _×

., V/ .
l + m S

-f:--_ .

(4.75)

We shall show that t_e points _,.._ lie outside the unit circle (y).

In fact, we obtain from (4.75)

_, = _ > _r_t(t + m_)+ (t -- m') 80+ (1 -- m')Cl + 6o)1=

_ ! +(I--m_)_0 > 1.
m

ApplyingVidte's theorem to(4.73), we find that * 2_,'_3=1" Thus,

t (4.76)

This means that the points ._ and _, lie inside the unit circle (y).

I de
Multiplying (4.54_ by 2m" a--_ and integrating along _/ for I_[> l, we obtain

QI

2hi _ da(p(e)__.__ +__M _ ,0(_)-vr_,_, do' 1 -- da
Y ¥ ¥

t ,o (o) _= _-- J d-----_"
V Y

(4.77)

The functions _(_) and _(_) are holomorphic outside ¥, including the point

_=co, where tp(co)=0, ,(oo)= const.
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holomorphic everywhere outsidey, except at the points _=_and_=--_,=_:,
where it has poles of the first order. Its principal parts are, respectively,

C1 G_(_)=- C_ (4.83)

where

(a, + a2)(_;--m)(! _-- m_,) _,_0

(a, + a_) (_ _ °-- m) ( I -- m G) _i,_o
C.. = 4 _' (--_')

Thus,

y _'(o) de (a, + a% ({_ -- m) ( 1 -- ,n{') {_0
I a (o)--- --

2_--7 ,,/(_) a--_ 21_--_[)(_--_ :)
¥

(4.84)

Ci C: (4.85)
_'({) _--_ _--_"

Substituting (4.78), (4.81),and (4.85) in (4.77_, we obtain

¢ (0 + P ({)_' ({)= 0(0, (4.86)

where

p (_) = (ai + a._)bo _ (_' -- rn) (1 -- m_') ]2al m_t--(l + m_')_"--(I--m_)_6o+ m
!

(4.87)

We have thus obtained an ordinary linear differential equation of the

first order in the complex domain /1,251 from which the function _(_),

holomorphic everywhere outside V, can be determined.

Integrating (4.86), we find

(4.88)

where C. is a constant.
From the condition

tim ¢ (_) = 0
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By Cauchy's integral formula,

_,-7d a--_ =--_¢)' _:- a-_-_ --°
¥ ¥

, _ do ] Slo2+m-/l,do •
'It ¥

(4.78)

To evaluate the integral

, o , f-,o+o,,,(o'
J ( - _)( --_)

¥ V

dff

o--_

we note that the integrand represents the boundary value of the function

(a'+a2)(_2--m)28°2_2 ¢ 2 2 _'(-_)(_ -- r.,)(_ -- _._)

holomorphic everywhere inside¥ except at the points _=._ and _---- ¢,, where

it has poles of the first order. Its principal parts are, respectively,

C3 G_(¢)= C_ (4.79)
6,(¢)-- ___¢, _+¢.

Here

C, -- (a,+ a2)(! -- m_2,)¢80 [40 -0 $'¢')

C, = (a, + a2)(!--m_2')'% I-- 4(1 --_{) _'(-- _')

Thus,

2--_f._a(o)_'(o) do C, C,o_'(o)o--_ _--l;, l;--h"
"t

The integrand in

9-_ _'(o) do I f--(al--Fa2)(o'--m)(l--mo2)O8o ,,, do(0)_-YoT"_ -- _ 2(02-c2)(02 _) _toJo_
Y

is the boundary value of the function

(a,+ a2)(_ -- m)(I -- m__-)_ao_,(_),
2(_'-0(:-_)

(4.80)

(4.81)

(4.82)
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where

1 o_(o) do
_7 _,_'(a)_--__

¥

I _ l+mo s , d. .l+m_ 2 ,2_i ,__ _0C_)_--__ = - __ _ (0.
¥

(4.97)

The integrand in

y ¥

(at 4- a,) (I -- ma_)' o60qV (a) do

2 (1-- ho) (l - ho) (I -- _w) (i -- Go) o --

represents the boundary value of the function

2 2 , 7 8(a, + %)(1--m_ ) .:,p(._)_ 0

2( l - t_') (t__- _ '

I
holomorphic everywhere outside _ except at the points _=_-= _, and _ =--_,,

where it has poles of the first order; its principal parts are, respectively,

C_ C; (4.98)_ (_)= _;-- t_,' _; (0 = _;+ _,,

where

C; = (a, + %) ( I -- ,2 2
4 (I -- t_)"_l)tlS°_ (_l),

Thus,

S oO

1 --q_( ) do
_- ,, (o) "("---)o-- _-

_t

The integrand in

1 ____ _'(o) do_(o) _,'(o----}"o--_---
¥

(4.99)

(a,+ a2)(I--m_'_)_[_60_'(0-- C; C_ (4.100)
2(I-- [_2)(_-- _') _--_, g+_, •

oo
¥

is the boundary value of the function

(at+a_)(l--m[S)(['--m)_-A'(I)"_ 1 _ ,,or "_
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wefindC,=O, whence

Using (4.87), we find:

q_(_)= e-_ P-_ _ Q(O e;p-_ dr, (4.89)

y d_ 2a, Sm_4--(l -t-mS)_,--(I--m'-)_bo-kmd_ =

I :1I ]"2., I. <1-.,_-') = j. _,-.,_. o,_o
= (a, +a=)6 o L_ (_= --m)YJ l(_'--m)_

(4.90)

Hence,

Substitution of (4.91) in (4.88) yields

(4.91)

at

r 2- 1°,-_'--7 _0
/_:(U--m)/ rq(O [ l--mE 1_-7_-7 (4.92)

where

Q(O 2(_--_:_)(_--_2)(_--_)(_-_)I_ Ck 1 fm]
P([) "=(a'ba')(_'--m)(I--m[')[6° [hT'7. _ 2hi _ "o-_J"

(4.93)

From (4.92), we can obtain q_([), proceeding from the boundary condition
complex conjugate to (4.54),

o,o, r,',,,)+ ,'(°_1=7.
al_(o) + _ cp'(o)+*(or)--a(o) L ,,,'(o') o'(o) J (4.94)

We have

I * (0) do"
• (4) ffi -- _-; o--_--_-+ ,(co). (4.95)

Y

Substituting in (4.95) for_(a) from (4.94), we obtain

* (_) = _p'(a) 2hi
¥ Y

_'(o)] do' l f _do" (4.96)+_ o'--_ 2=i jo--_ +*(°°)
¥
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1
holomorphiceverywhereinsidey except at the points _=T-=_3 and

I
_=--_-------_, where it has poles of the first order. Its principal parts are,

respectively,

c; c;
G;(_) = ___, , G_(_) = --_-_-. (4.101)

where

c; = (a,+_P(¢_-.,)o -mCDSo _,(_,) ]
4¢:- 1) I

c; = (_' + a_)(_ - m)(_-,,_) 80_, (_ b) "
4 (_ -- 1) J

Thus,

(4.102)

I r--_-,_,(_) a_ c; c;
=--:. -a(a)_ • = -- (4.103
z=l J (o'(a) a -- _ _-- _, _ + r_ "

¥

Substituting (4.97), (4.100), and (4.103} in (4.96), we obtain finally

.1 + m__ .... (al + a_) ( 1 -- mt_:)t 5o_(p'(t_)

4

+)--],c;, ' r_--_, 2= J_-_ +¢(_o).
(4.104)

Here,

! f .*(_ _" (4 105_
¢(_)=2_uj o '

where by (4.94):

eta) = f-,,,(p (0) - _---_y,V(_,)+ {,((_)I._ + o'(0) j

Substituting this in (4.105), and noting that by(4.78), (4.97), (4.100), and

(4.103),

I _6_aa ! f I +ma'j ----6--= o, E-__ _ _'(_)d(,= o,
¥ V

_-_ - ._.(_)
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l

2=i j o_'(o)

we obtain

(oo)=_ j---6-+ (C3--_+)El+ (CI--C-')_.
*i

It can be shown by direct substitution that the boundary conditions (4.54) or

(4.94) are satisfied by the functions (_(._)and_2(_),given, respectively, by

(4.92) and (4.104), for any values of Ct andC_(i= 1,2.3,4). The latter are in
accordance with (4.80), (4.84), (4.99), and (4.102), expressed through the

still unknown magnitudes ¢p'(._,)and (p'(--4,)•

Since the root _, is real, we have

(4.105a)

Hence, to determine the constants

-. _ -. I -. I (4.106)c, = _;_. c_ = c::,. c_= c_. c, = c,

we require only the two magnitudes

,_'(_,), ¢p'(--_,). (4.107)

For this, we must first show that these quantities represent the values of

,p'(._) at the points _a and--_t

Differentiating (4.92), we find

_'(;) = _ [q (;)--_(t;)l. (4.108

The same result can also be obtained directly from (4.86) [sic].

Setting in (4.108) _ = _, and assuming that the function ¢p{_) is holomorphic

everywhere outside y, we find from (4.93) [since P(_l)--*oo]

2Ct(_t-- _,)(4,-- _) (_t-- _) 4.109)

which, by (4.84), is satisfied identically. A similar identity is obtained by

setting in (4.108) _ = _ =--_ .

The unknown constants (4.107) will be determined from the condition

that the solution of (4.86) or (4.108) be holomorphic. Cauchy's theorem /25/

states that the function ,_(_)is holomorphic everywhere outside y if the

right-hand side of (4.108) is holomorphic everywhere outside y. The right-

hand side of (4.108) may have singularities outside y at the points

I I
_s---- , {;,-------_. (4,110)

vm
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where

l

alk = 44+/- _k % (_'+/) (/, k -- l, 2)

[ , ]
1 (" fd,

alo= _ 3o _ _,+j + _o (_,+1) (/= 1, 2)

I

All the coefficients of the unknowns in (4.118) are real, while the free

terms are generally complex.

Rewriting (4.118) in complex conjugate magnitudes, we obtain

(4.119)

a.Cq + a,,C, + a,_C,+ a.C, = a-,o| (4.12o)

Solving system (4.118), (4.120), we find

/
lm Ca = _ lm [a_o(a2._-- a,) -- a2o(a,, -- a_,)]

!
lm C2 = -- _ lm [aJo (a2t--a_a)--a:o (a.--al_)l

!

Re C1 = _ Re [alo (a_ at- a2,) -- a_o(ax2q- al,)]

1
Re Ca= -- _ Re [alo (anq-a2a)--a2o (aa+ ala)l

(4.121)

where

Ax = (aaa -- ais) (a_a -- a..,) -- (a_t -- a2s) (an -- at,) 1.
A, = (aax at- a,,) (an q- a,,) -- (a,t -4-a_) (an -F a.) ( (4.122)

From the coefficients C1 and C= given by (4.121), we find C3 and C, by (4.117)

and C'/ Q= 1, 2, 3, 4) by (4.106); the functions ?(_)((4.92)) and _(_) ((4. 104)) are

therefore completely determined and the problem is solved.

We can solve this problem similarly also for 6(a)_ const., but in this

case (4.73) will no longer be biquadratic. Determination of its roots is

then more difficult, so that the solution becomes more involved.

The solution given here can also be generalized to apply when z=_([)

((4.65)) is any rational function.

Infinite plate having a circular hole

with reinforced edge

Setting m = 0 in the above formulas we obtain the solution for an infinite

plate reinforced by a rib of constant rigidity around a circular hole of radius R.
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at which the function P(O (4.87) in the denominator of (4.108) beconqes zero.

We therefore require that the numerator of (4.108) also vanish at points

(4.110), i.e.,

q(_,) --q0 (_) = O, Q(_,) --_o (_6) = O. (4.111)

By virtue of (4.84) we can write (4.92) as follows:

1 Ck 1 d_ (4.112)

where

at

_(¢)= t i--::_T-' (4.113)

Expression (4.112) can also be written in the following form:

4

k_I

(4.114)

where

f [!¢ I, o]

I d_ (k=L2,3,%o_(_)= a(._) PCOiq(O _--_,

(4.115)

The functions %(_) and o,_(_) are known.

(4.111), we find

! 1 fdo

k_=C* [_,_---.-_- °' (_,)]= 2-_-S __--_6+ °0 (_G)

Substituting (4.114) and (4.87) in

(4.116)

Comparing(4.80) with(4.84) and noting(4.105a), we find

C3 C, l--m_ (4.117)

c.= =

Eliminating the constants C_ and C, from (4.116) with the aid of (4.117), we
obtain

aatC, + a,iC2 + a,oCt + a,_C_ = a,o | (4.118)
a,,C, + a_.,C, + a..aC, -5 a_C_ = a,o ['
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In this case

K
80 = _-, _x= oo,

C_ = C_=0

i I

¥

_s = 0, cp'(_;0 = 0,

(i = 1, 2, 3, 4),

(ax + a_)So r.
P(;)- 2ax(t+_0)"

and, according to (4.92) and(4.104),

a_ j /'P(;) = -- T _ t_j -- _ ,J_ + _ (oo)

(4.123)

where

2 (i + 80) -- (al + a2) 8o 2a, (1 -- 8o) >
20+_0) ' "_=(_T-_0 0,

A,(;) = _?i jo_ ;, *(oo) = _ -

Representing the known function A.(_) outside y as a Fourier series

A, (;) = _ A,U*,

we obtain from (4.123)

cp(;)=--v''_ A, r-*
___/,k4-vs" "al

k=l

(4.124)

It is easily proved that (4.124) coincides with ,p,(_)in (4.59).

We can similarly obtain the solution for a circular hole whose edge is

reinforced by a thin rib of variable rigidity.

§ 7. EMBOSSED PLATE. BOUNDARY CONDITIONS

Plates are frequently embossed in various shapes in order to increase the

rigidity. Figure 49 shows section and plan of a plate with a single

embossing, The plate carries an arbitrary transverse load.

Such a structure consists actually of two plates, I and II, linked by an

annular stiffening rib. For the sake of generality we shall assume that

the thicknesses h, and h, of these plates differ. The distance between the

middle planes of the plates is 2h0. The axis of the stiffening rib is denoted
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byF. Theinteractionbetweenplatesandrib is shownschematicallyin
Figure50. Thexy -plane contains the curve F inside which the origin is

located. The Z-axis points downward. Let S be the cylindrical surface

perpendicular to the x y-plane which passes through I_, and let Fland F,

be the curves along which this surface intersects the middle planes of

plates I and II.

] _f, [

FIGURE 49. FIGURE 50.

We assume the rib to be so thin that its resistance to twisting and to

bending in thexy-plane can be neglected (cf. §1 of this chapter). In other

words, we assume that the rib cross sections are not subjected to twisting,

nor to bending moments whose vector is parallel to the Z-axis. We also

assume that the interaction between the plates and the stiffening rib takes

place on the surface S.

The plates adjoining the rib act on the latter with the following forces

(per unit length of F):

a) The forces N, and T, in the xg-plane;

N, + iT, = (N_ -- N2) -- i (T_ -- T2). (4.125)

Here N k and Tk(k = 1, 2) are, respectively, the projections on the normal n_

and on the tangent % to Fk of the principal vector of the stresses acting in

plates I and II along Fk (per unit length); N, and F, are, respectively, the

resultant projections on n and T of the forces acting on unit length of the
rib axisF. The normal n to F is directed toward the center of curvature,

while the direction of the tangent _is shown in Figure 49. The forcesT_

and T,, which are normal to the plane of the section, are not shown in

Figure 50; their directions are, respectively, away from, and toward the

reader.

b) The shearing forces p normal to the xy -plane and the bending

moments m :

,= 0,,-pi)+ h0 (r, + T,)},
m = (,n, -- m,) + ho (N, + N_)

(4.126)

where p_and ink(k---- 1,2) are, respectively, the shearing force and the
bending moment acting on Fk.
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The externalload applieddirectly to the rib canbe referred
eitherto plateI or to plateII onT..

Under the action of loads (4.125) and (4.126) the annular stiffening rib is

deformed together with the plates adjoining it. We approximate the

compatibility conditions for rib and plates on S by equating the respective

strains (ek) and (c0)of those fibers of the plates and rib which are equidistant

from the xy- plane.

e,----e0 forall--(ho+_).Z.--(ho--_), (4.127_

_,----eo for all (ho--_)<Z.(h,+_). (4.128/

According to (4.16) and (4.7), whereZ has been replaced byZ+h0, we
have

o_, [ ]"-d .
av ]J+ ReLiC;("+'°,) j (k_ 1, 2). (4.129)

In addition, by (4.17) and (4.5):

,v+ L_ (4.130)
eo = ElF "A Z.

Substituting (4.129) and (4.130) in (4.127) and(4.128), we obtain

(k= l, 2), (4.131)
N

[--_ +(--l)'h0] < z < [_ + (-- l)'h0],

where us, vk, wk are the displacement components, respectively, in the x. y. Z.

directions. Since (4.131) must be fulfilled for anyZ in these intervals,
we must have

r. dfOw, Ow,Xl ReEf. d tu.+io,)]=_p,p. (4.132)

,,:,.2,. 14.133 av /j=x

Subtracting one from another the equations (4.133) corresponding to

k : l and k = 2, respectively, we obtain

[ ,0_,/1_ Re[i_d I_______'/1.
Re[ias\ax-- ayjj- [ ds_,Ox Ou,lJ

(4.134)

Adding the two equations (4.132) for k= l andk= 2, and taking (4.134) into
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account, we obtain

El F -_ (u, El F

By virtue of (4.134) and (4.135), we can rewrite (4.132) and (4.133) as

follows:

(u_+ iv,)] +_= 0.
• d . N

d [&o, laW,_] L.- Re _-_ t-_- -_yj.! = x

(4.136)

Let

It(s)= -- m k --l pkds2 _dsl (k = 0. I. 2).
Q

(4.137)

(4.138)

Substituting (4.126) in (4.138) and using (4.137), we obtain

! (s) =/i (s) -- Ii (s) -- ho _ [(Nl -- iTi) -'F (Nl -- iTi)] _ds, (4.139)

where

(_v,- it,) _= ih,(x(2 - ,'Y75,

(NI -- iTl) _ :--" (1) . (I),h_.(X,, -- IY. ), (4.140)

where X_, Y(*) (k= 1, 2) are, respectively, the projections of the stresses

on the x- and y-axes.

Substituting (4.140) in(4.139), we find

|

i (s) = l,(s) __ l, (s) __ ihoh, _ (X!l) -- iY°_ ds -t- ihoh, I (X(_i -- iY_)) ds. (4.141)
0

We shall now express the displacement components of plates I and II by

formulas similar to (1.76) and (4.19):

Ow, ) _. ,.k(O+ l [&,)o .&.o\Z [_' - t-_- _;(t)+ t_;(t)+to,, = t_-'_-)'

2,k(uJriv. ) = xl*)_-_ -- 7(p'.(/)--_.(/) (k= l, 2), (4.142)

where uP is the known basic deflection of the unembossed plate at the same

3 _ V i

load, u(_i=i--_-_k, ii and I_k are the elastic constants of the k-th plate.
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d [--_/) + i,g' (0 + _; (0)}=-- 2iA_Re{}

° ._,c.,-c. (4.148/
2

E hk [Tk (t) + tqp_(t) + _Pk(t)] --

The boundary conditions (4.146) to (4.149) are generalizations of(4.23),

(4.43), and (4.44). If we set in (4.146) to (4.149): ho=0 andh_=_,, D,=D,,

_,= _, (i.e., we assume that the rib axis lies in the common middle plane

of plates I and If, whose thicknesses and elastic constants are equal), we

d
obtain (4.43) and (4.44_. The terms behind -_-in (4.147) and (4.149) have

opposite signs, since the directions of the coordinate axes in Figures 46

and 45 differ (this means, in fact, that F is described in opposite senses).

Forh0=0. h,= _,=DI=0, we obtain (4.23) for the case of a rib

reinforcing the plate edge. If h, = _ = Dx = 0. but ho _ 0, we obtain the

boundary conditions for the case when the edge of the hole is reinforced by

a rib whose axis does not lie in the middle plane of the plate, while one of

the principal axes of inertia of its cross section is parallel to the middle

plane (rib on one side, asymmetrical relative to the middle plane).

If the functions q_(z), _(z) have been found, we can determine the

deflections wk(x, g) from (4.10), except for constants defining the rigid-body

displacements of the plate. These constants are determined from the
condition

w, (x, y) = w_ (x, y) on r. '_ '50)

In the following section we shall consider as examples the axisymmetrical

bending of a circular plate with central embossing. Boundary conditions

(4.146) to (4.149) are exact for axisymmetricalloads, since in this case the

twisting and bending moments in the plane of the rib vanish identically.

§ 8. AXISYMMETRICAL BENDING OF CIRCULAR

AND ANNULAR PLATES WITH CONCENTRIC

EMBOSSINGS AND ANNULAR RIBS. INFLUENCE

FUNCTIONS

Structural elements such as circular and annular plates of uniform

thickness or with stepped profiles are widely employed in mechanical and

structural engineering. Such plates, whose rigidity and strength are

increased by concentric embossings and thin ribs, are used for reservoir
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Wehave,in addition,(4.19)and(1.65),accordingto which

i i (x_'_)-- iY_*') ds =: q:k(t) + lq"k(t) +_p, (t) -- C3k,
(4. 1 43 )

0

I,(s)= 2[XCk)'p'k--_)--t_'k'(t)--_'k(t)l(l --v,) D, + lo(s) + iC'ki--C'k, (4.144)

where lo(S) is obtained from (4.137) by substituting the bending moments

m0 and shearing forces P0 corresponding to the basic deflection w0; C'andC"

are, respectively, real and complex constants; ×(*)=(3+v,)/(l--v,) .

By analogy with (4.3) and (4.15), we obtain the equilibrium condition

for part O,s of the rib:

L.= i][l (s) + iC ? --C.o].

[: ]"'") (4.145)At=--_ h, (X,, --iY_t')ds+h2S (X_)- iY_))ds+C° =
o

r' ]= -? y t,_S(x?'- iv_'}e_ + Co .
Lk_l 0

Substituting (4.145) in (4.136), and taking (4.141) to (4.144) into account,

we obtain finally four conditions / 150/ on F for the four pairs of functions

(%. %). ((p_. q,_) (k = l. 2) , holomorphie in the corresponding domains of plates

I and II (or for the four functions cp(z), q_(z), q_'(z), ,'(z), piecewise holomorphic

in the domain of the entire plate with F as discontinuityline). These
conditions are:

2

2E(-- 1)*[xtk)_-_f) --[_'k' (t) -- _ (t)] (1 -- vk) Dk --
/=1

-- h, E (- 1)* h, [q%(t) + ?_i (t) + % (t)l --
k=l

" +,<'(,)+.;(,)j}Us It; (t) =

., • d 0-_ 0wo
= A,tRe[t _-s(-ffZ --i-_ff )]+ iC,t--C,, (4.146)

2

_h, l%(t) + hp_ (t) + %(01-
tt==!

-- 2itEtFho Re q)_(t) + (t) + "¢;(t)l =

=ihoEiF_Re f'd IOw° .Owo\]

t

2 X (- 1)*Ix<+)_-_ -) -- ?_;' (t) -- _*, (t)] (i --v.) D,-
kml

t

--ho _'_, (-- l)*h,l_-_ + t_ (t) + %(01-
k_l

(4.147)
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for theannularpart (i.e., for R_<r-.<Rz)

w2= w°-c,ln _--C, _--_}, (4.153)

R _t_B_ R (4.154)v,, = B, r

where w° (i = I, 2) are the basic deflections, under the same axisymmetrical

load, of a thin plate of stepped profile without embossing, similarly supported

along r = Q. These basic deflections are assumed to be known; we have to

determine the additional states of stress and strain, i. e. , the additional

deflections, displacements v,, and stresses of the plate, due to the

embossing and the outer stiffening rib.

Expressions (4.151) and (4.153) satisfy automatically the conditions of

support and of continuity of the deflections across the embossing web:

w2=O at r=q, wl=w2at r=R,

since, by definition, the basic deflection w° satisfies similar conditions.

The six unknown coefficients A,, B,, B2, Cz, C_, C4 defining the additional

stresses in the plate will be found from the compatibility conditions for its

different parts. The interactions of these parts, due to the additional

stresses, are shown schematically in Figure 52.

Let _/,, ¥2 and u,, u2 be, respectively, the angles of rotation of the radial

sections and the radial displacements of points on the axes of the embossing

web and the stiffening rib. The compatibility conditions (4.127) and (4.128)

for the embossing web r = R are in this case

dwt dw2 (4.15 5)
d--b-= -_ = Vl,

v,, = Ul _ ho_/,, v,, = uI -- boyr ( 4.1 5 6)

Similarly, for r = Rz we have

dw_

-_F-= V,, (4.157)

v,, = u2--h.¥ 2. (4.158)

Conditions (4.156) and (4.158) apply under the assumption that radial

displacements of points on the axes of web and rib can be considered as

displacements of points of the plate, located at distances h0 and h.,

respectively, from its middle surface (cf. Figure 51).

Equation (4.158), and thus also the solution obtained below, are valid

even when the centroids of section of the outer rib lie below the middle

plane of the annular part of the plate (h. is in this case negative).
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bottoms,pipeflanges,cylindercovers,diaphragms,pistons,reinforced-
concreteplates,etc. (Figures51and52). It is of practicalinterestto
studytheinfluenceof embossingsontherigidity andstrengthof suchplates.

FIGURE 51

FIGURE 52.

We shall solve in this section the problem of the elastic equilibrium of

a circular plate having a stepped profile with central embossing and annular

stiffening rib, subjected to an arbitrary transverse axisymmetrical load. *

Particular solutions will be derived for a whole class of engineering

problems concerning circular and annular plates with one or two elastic
annular ribs.

Despite the generalized formulation of the problem, the final results

are presented in a compact form which is convenient for practical

applications.

Consider an elastic isotropic circular plate with embossing, whose

diametral section is shown in Figure 51. The plate is simply supported on

the smooth contour r = {_ and subjected to an arbitrary transverse axi-

symmetrical load (r is the distance measured from the center of the plate).

The plate is reinforced along the outer edge r =R_ by a thin stiffening rib

whose centroids of section lie at a distance h, from the middle plane. We

consider this embossed plate as a compound elastic body of revolution,

consisting of a circular plate (r _: R) of thickness h,, an annular plate

(R _ r _ RI) of thickness h,, and two thin circular elastic ribs [webs] of radii

R and R,. The distance between the middle planes of the plates (depth of

embossing) is 2_. The deflections w_ and the radial displacements o,,

of points of the middle plane of each plate are represented as follows ] 142l:

for the central part (i.e., for 0_r_R)

(4.151) -

(4.152)

* The results of this section were obtained by N.P. Fleishman and S.A. Grach 1165-167l.
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Substituting (4.151) to (4.154) in (4.155) to (4.158), we express all the

six unknown coefficients through the four basic unknowns ¥,. ¥,,ul, us:

Bl = _ In(ui-- how)-- (us-- h,v_)]

l
B, = _--I ['I(u,--h,'¢_)--(ul--ho_i)l

R
A, = u,+ ho% C,= _ (Yi--¥_

= _ In(V,-- iT)--(V,-- _o)]C,

R
c,= _ 1,1(v2- _)--(v,--¥7)1

, (4.159)

where

R, .
n = _-, _?= k dr/,-R v0= \ dr/,=R, (4.160)

Substituting (4.159) in (4.151) and (4.153), we obtain:

R_ In_-+ 1--]_wl = _ + 2 (n'-- 1) {(v_- v_) 2 +

+ (Y,--V,°)n [(n'-- " _

Ri (2 In f- * il'-- r' _ ___=_+_[n@_-v °) Q- _, )
/ ^2 .1% "1

-<.,,- t + j

(4.161)

We can similarly express through ¥,, y,, u,. u, the radial and tangential

bending moments M l, M.I acting on the central (subscript "1") and annular
(subscript "2") parts of the plate. According to (1.19), we have

_d_, vt dw,] IMn =--Dl \-a-_ '}--i--_-]

J[ 1 dwl dizi)l\

- t-z"zz + )
(i= 1,2), (4.1 62)

where D l = E_h_ll2(l--v_) is the flexural rigidity of the corresponding part

of the plate; E_ is the modulus of elasticity; v_ is Poisson's ratio.
Substitution of (4.161) in (4.162) yields

o D,
M,i = MI,,---_"" (1 "_ 'l,'i)(¥ i --'_l)

Di
-ll_tll _ Mill-- "_"(1 "-b 'Vl)(¥ I --"t_

M,, : M_ + D, { [R_Cn'--I)'i('t_--'a9(I+ ,_,)+ (4.163)
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,R;II (4.163)
cont'd

where /14°,_and M_ are the known bending moments in the stepped plate
without embossment or rib, obtained from (4.162) when _,_ is replaced by w_.

In addition to the bending stresses, the plate is also in a state of plane

stress. The radial and tangential forces N: and T_, which depend on the

displacements a,_ ((4.152) and (4.154_) are according to the two-dimensional

theory of elasticity:

Elhi Al
NI=TI= R (1 --vl)

E,h, [ R']Ns= R(l--v[) Bs(l+vs)--Bl(l--vs)-_

T.= _[B.(I +..)+ B,(I--v.) R:]

(4.164)

Substituting (4.159) in (4.164), we obtain

Elhl
NI = Tz _ R(I -- v_) (ul f hoyl)

Ns ----R(I --v_(ll'--I) (u,--h,y_) (I"4-v_)"I"

f (l -- vl) _] -- (u,-- hoy_) [(l t ..)-I (l -- V,) r_] }

E_ {q(u,--h,_.) [(1 +v.)--7", = R(] --v;)(q,-- ])

--(,- v.)_]--(-,--h.V0 [(' + v,)--(,--v.)_] }

(4.165)

For axisymmetrical strains of embossing and stiffening rib (Figure 52),

we have

mO)R" m(")R_ N (')R2 l_mR_
_, = _ . _, = -_.' " = -_--F" ,I = -_.

(4.166)

where m(° and N (° are, respectively, the bending moments and radial forces

per unit length of rib axis (i ----1.2); A = E1 is the flexural, and EF the tensile

rigidity of the embossing web; /i.-- E.I. is the flexural, and EoF, the

tensile rigidity of the outer rib; I and I. are the moments of inertia of the

web and rib sections relative to their central axes, parallel to the middle

plane of the plate; g and E. are the moduli of elasticity for web and rib,

F and F. are the corresponding cross-sectional areas.
Formulas (4.166) are valid for a thin rib whose cross section is not very

high. The limits of applicability of the first two expressions (4.166) have

been investigated in detail in ] 131].
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In our case we have, according to (4.125) and (4.126), (cf. Figure 52)

m°' --- i(M,J -- M,2)-- ho(N, + NJI,_R |

M n ----(M,_ + h*N2)'=R' /
No_ ---(N_ -- N_),ffie,N _*_------ (NJ,ffiR'

(4.167)

Substituting (4.167) in the right-hand sides of (4.166), and taking (4.1 63) and

(4.1 65) into account, we obtain the following system of four equations:

a_hoy t + aph y_ -b aauL + aj, u2= aloho_ + % h.y_
(]= 1, 2, 3, 4),

(4.168)

where

ho_) 'a,, = n(¢-- l)b + lO + v,) + _0 --n)] ! + 12_ ±

+ k (| "4-v_,)0Is -- I) (l + lz --_,}

{ h, h, }a,s ---- 12 _ (1 + vl) (q_ -- o o!) -_ -- -_ [(I -}-v,) + _( I-- vDl
_°I "2

_ ----24
%.=--2"q -_ 12 hi/' as, B hi

a,_-- lh(l+ v,)(n'-- i) --[(1 + v,) + _'(1 --_,)l

a. = (n'+ 1)+ (¢-- Dlh_ -- v, + 0 + vDlhl

ace _ _ a_4 _ aal == _ O's2 _ _'q

au -_--- [_ (i -t- v,) + (! -- vs)]

aLx_--2_ _+ 12 , a4_----24q

a_, = (n_ -- 1)_, + I_' (1 + vJ + (l _ ,:,) 1 I+ 12

h*

aLL= -- 12 _111_(1 + "v2)+ (l --Vs)]

axe = 'q'(l --vs) + (1 + v.) + _,(I -I- vJ(q I- i)
he

% ffi --2q_, %. = % = %-- % = 0
h, D_

a4.=_ll(l+vl)-t-(l--._t), a4o=--2_-, kffi_

Ep 0 - @ EJ, 0 -- _])

Exhx(l -- _) h_(1 q- 'vs)
P, ffi e,_,tt-v,) "ffi_"_,,(t +v_)

(4.169)

, (4.169a)

R_D, ' _D, "
(4.170_
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Solutionof system(4.168)yields:
l

¥,----_"[(%%+ %0%) 0 l 0¥] + h-o(h'a4"t_2 -- 2vlh°t_t) _ ]

1
V2= _/[ho%v, + '06(h0%v? + h.a,.V_)]

ul = -_. (h0,oTVl_- h.c%V2)

"2 -- _ (ho_O.V_+ h,_loW)
G23t06

(4.171)

where

(4.172)

Substituting (4.171) in (4.161), we obtain the deflections:

w, = t_ -_ t_,_'_y_°+ _!_V ° (i= 1,2), (4.173)

where w(__ and w(__ are influence functions which depend only on the

geometrical and elastic parameters of plate and rib, but not on the load.

Hence, for a given embossed plate, these influence functions need be

calculated only once and tabulated for all cases of axisymmetrical loading.

In (4.173) only the basic deflections w° and angles V_ and V° depend

on the load; these are known if we have solved the problem for a circular

plate of stepped profile. Expressions for the influence functions are easily

obtained, but will not be derived here for the general case, since they are
rather involved.

The bending stresses at the surfaces of the plate are obtained from

(4.1 63) in the form

6M,_ :t= 6M,_
o,=±y, o,,: -_,. (4.174)

The normal stresses o_ and _;_, uniformly distributed over the plate thick-
ness, are obtained from (4.164) in the form:

. Tt
o:l ----h_'. _,, =-_. (4.175)

The total normal stresses in the plate, obtained by superposing the bending

stresses (4.174) and normal stresses (4.175), are

o t°t,, = o°,,+ o_)¥? + o_)¥: I . ( 4.176)

I
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where_l anda_ are the known normal stresses corresponding to the basic

deflections _.
The influence functions

do not depend on the load, but only on the elastic properties of the structure

(plate, embossing rib) and its dimensions.

The above solution is applicable without any modification to the built-up

plate whose diametral section is shown in Figure 53,a, at any transverse

axisymmetrical load.

!

|m

2R
q.

2_

FIGURE 53.a.

FIGURE 53,b.

If we assume that the plate is joined to the thin rib along the line of

intersection between the middle cylinder of the rib and the plate surface

adjoining it (Figure 53,b), as recommended by S.N. Sokolov /131/, (4.167)

remains valid for hi --- ha = h. In fact, in this case (Figure 53,b)

M,_J. R= M, + _- A',.
. h

M,_I,.R,= M;-- _ _; (4.176a)
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h .
m2.= M[-F (h,--'_) N2,

ni _ Ns_ Nl I;

%= -- N_ I
(4.176b)

substituting from (4,176 a) for Mj. M2,M'2,NI, N2 and N_ in (4.176b), we

obtain (4.167).
Since in the case considered the compatibility conditions (4.155) to (4.158)

and equations (4.166) remain unaltered, we conclude that (4.171) remains

valid also for the system shown in Figure 53,b.

We shall consider some particular cases.

Circular plate with central embossing, reinforced

by a symmetrical outer rib

Let one of the principal axes of inertia of the cross section of the outer

rib lie in the middle plane of the annular part of the plate, i, e., ho = 0 .

(Figure 54). We obtain in this case from (4.171)

! yo___ (a_+y, = _ (asa'o -- 4vlt') at,)

1

a_la_4 --b 4q I hoy_
Ul.= 411s -- a_2a34

2_(a_l+ c_=) hoyl
us = 411s_ auas '

(4.177}

where

a6 = Ip(l+ vs+ 8.)+ (I-- vz--6.)
!

Aj = a_la.__4qt [(a_sa_-- 4112)(ailas--4q')--

-- a12as (4VlS-]- a2ta34) -- 2qaL4as (a2t -{- an) ]

(4.178)

Embossed circular plate hinged along the circler=Rl

(Figure 54,a).

In this case us=O, which is equivalent to E.F..-,.oo in (4.166) or

_--,co in (4.169 a). In the limit, we obtain from (4.177)

Y'-_ A, (a6(xl° -- 4vls)_ -- 2T1(a_ -F a$)yo]

| -- 0 _ 0

I'_ = _, [2_(_, yl) a_2]

• = _ail boY1, us = 0
"s am

(4.179)
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where
1 2

As ----_-[% (a.a+ -- 4_ ) -- a.a+a2d.

,. ao

i ! = 2_

I - 2p
2R+

"_ b _"

FIGURE 54.

If, in addition, the flexural rigidity of the plate and its

material are uniform, i.e., D,=D,=D, _,,=v,=% and h,= h,= h , then,

according to (4.169a), _a= _---- l and (4.179) becomes

2
Y, = _ 11'1211+ _, (_'-- l)ll_(I + v + 8,)_--8,_1

_'(1 + v + %)+ (1-- v-- _,)

2ho(I + v --vil')
u, = _ _ _,i___--_ v,, -, = o

(4.18o)

where

As = _'[2q -1- [Bl(q"-- 1)1[a,8 + 2q(l -4- v + b,) J +

+ 24 a, --K_slq_ + 2(1 + v) _ + 2q_(! --v _) 1-

Homogeneous

same thickness,

(Figure 54,b).

circular plate with embossing of the

rigidly clamped along the circle r=R_
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Letting 5,_co in (4.180), we obtain

O i

v,= _,12(2_+ O,n_-0,)01v?-v°) 1

2ho ( 1 + _ -- v'12) /

(4.181)

where

_t_ = ,qs[2TI -I- p_(TI2- 1)][ (_-- I)6 + 2_] +

h2
+ 24 -_2°(-q2- l)t,l_ + 2(1 + ,;)2 + 21qg(! _ v2)].

Setting h0=0 in (4.181), we obtain the solution corresponding to

axisymmetrical bending of a circular plate with concentric rib, rigidly

clamped at the outer edge. This solution was obtained bya different

procedure in § 14 of Chapter II.

Circular embossed plate

No outer rib is provided in this case, i.e.,h,=5,=0.

The circular plate is reinforced only by a central embossing, and is

supported at a distance Q from its center (Figure 55,a). The solution for

this problem is given by (4.177), where we set 6,= 0. This is equivalent

to replacing a, by -ass. We thus obtain

21] . o
%= _ _v,-- %)+ "P

4"q"+ a,la34 boy1,
us _ 411,_ aua.

2q (a,t + a2d ho'h
u2 = 4118_ a=2a_

(4.182)

where

1
A4 = I(a,,a3s + 4_ _)(4_* -- a.a.) +

4"q2-- a_2a_,

+ at2aas (4B' + a21a3,) + 2"qauaa3 (a_ + a.)].

Since t', and _, are interrelated by (4.182_, we obtain fairly simple expressions

for the deflections(4.161), the bending stresses (4.174) at the plate surfaces,

and the normal stresses:

R,_I(Y,--_ x

(4.183)
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- R_II (YI -- Y_

w2= _ + %R,v:= w:+ 2i._(l +_.) + O-v:)l x

6 o Elhl
s o +__e_vo = _M,, 2Rt___(v_-v_,4- % = -_ M,I

4- %, = -_ Mo_ v°= 2_ 0 - _,,)(v,-- vg,

6 o _- _,h, 6,_0_ _,h,. (_-l±%= h7M'_+ "_-RT-v'°= h_ _ 2I-_ tv,-v°) \,, )

6 o +oe2_ 6 -o E2h_ o,d: oe+= ___M,2 vo= (-_ -l-l),_ Mo_+2___R__iV, _ V_j R+

- E 1
o:,= o;, = o__ voil - v;) = _ (__ _,0(u,+ hov,),

o_ = _;, _o 0 - v_)v,° = R,E_"t._+nO-- v._)(h°w--u')l(,_.-- l) x

x [(, + _,,)+-_(, --,,,)] •

• =-. E2ho E_ [u_ + _1(how -- th)]

x [(! + _")--R/" - _') ]"r_""

Vo"

_, _o

294

FIGURE 55.
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The parameter ¥0:does not, of course, appear in these formulas.

Homogeneous circular plate with embossing of uniform

thickness (_1=va=v, lh=h,=h, DI=D._=D, _s=_= I) hinged along the

outer edge •=Rl(Figure 55,b). The solution is obtained by setting u..----0

([_,_co) in (4.182):

9

v,= _,1'(n'-I)(I+ _)12n+ P,in'-I)I_0 [,

I2ho(I+ v --V,l')
" = II(2q+ _,TI2-- [_,)¥'' u,= 0

(4.184)

where

A6 = [2'I'+ [_,n('l'-- I)](411'--anat,)+ 2a,,aaa(V,l'--1--v).

The coefficients a n and a,2 in (4.169) are here determined for X= ! and

h,=h_=h. The deflections and stresses are again given by(4.183), with

(4.184) being used.

Stepped plate with two annular ribs

A circular

symmetrically to

and • = RI (Figure

plate having a stepped profile is reinforced

its middle plane by two thin ribs along the circles •----R

56). Setting h.=h0----0 in (4.171), we obtain finally

!

,___o: ____{[(_,_I)8+ n'(l+ v2)+

+ (I--_2)l'_v?+ 2n5._o}

%_ _o: __. {2n,5¥0+ [n5(n'--I)+ (I+ v,)+

+ ,l'(I--v,)+ x(I+ v,)(ns--I)18.,t°}

(4.185)

where

a.= in8+ X(I+ _i)1[(n'--I)5, + n'(I+ v.)+ (I--v,)]+

+ 8.[(I+ v2)+ ,p(I--%)I+ (I--_22)in'--I).

As ought to be expected, the plate is in this case subjected only to bending

stresses, while the normal stresses a:I and _, ((4.175)) and the forces TI and

Nt ((4.165)) in the middle surface, vanish identically.

For a homogeneous plate (vl=v,=v. El=E,) of uniform

rigidity(_a=_,=l), we obtain from (4.185)

v,- _o___I {lq,(l + v + 5.) + (I --v-- 5¥_+25,y_)'8,)1

, (4.186)

_--._, = _ {2n5,_,o+ 15(,l' - i) + 2,118._)..,1= ,¢,= 0
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where

A 7 = -- q(,18 + 2)(I + v + b,)--b(l --v--8.).

T

i

L

L
2R

=7

2_
"i

2R_
L

FIGURE 56.

A stepped plate is reinforced by a single inner or

outer stiffening rib. The solution is obtained from (4.185) for

5.=0 or 6=0, respectively(cf. §12 of Chapter II).

Annular plate with reinforced edges

A thin annular plate, reinforced by ribs at the edges, is simply

supported along the circle r = e (Figure 57,a) and loaded symmetrically

with respect to its center. The solution for this case is obtained from

(4.171), with

h, = _. = _3 = 0. (4.187)

The outer annular rib is symmetrical to the middle

plane, and the plate is hinged along the edge r=R_on a fixed support

(Figure 57,b). The solution is obtained from t4.1,9) by s_bs_u .... g_4 1_7 _'

!

¥1 = _ (%[Ils (1 --v_) +(1 4- v2)l--4_'} _'_--

2n
- K, ('_5+ '_ v,_

1 o
¥" = _'6 [211(¥j -- 'Y_ -- aaav"l

u_= (I + v2)+ _' (1 -- v2) h '
(i + 11_) + (_'-- 1)(f,1_--"2) o-

u,,_ 0

(4.188)
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where

[ (As=a6 "q('q_--l)8+(l +.','2 Fvls--vl_=) 1-{- 12"-h_ --

12as[(l+ v:) + "qt(I --vl)]s h02
--4"qs-- Ot2--1--1) q- (_s --1) ([_,q --v2}'-_22"

a

b

c

d

FIGURE 57.

No outer rib is provided (Figure 57,c), i.e.,8.=0, andthe

plate is simply supported along the circle r=Q. Substituting (4.187) in

(4.182), we obtain

!

¥, = _) [a_ ('rIs-- v_-q' q- 1 + v_) q- 4"q']¥o [

4_ s -- a_4(1 q- v= "4-'12 -- "q_v_) hoYI
"s ----"411'-- a. [01=+ 1) + (_2__ l)(_--vO]

2v1@1("1'-- I) ho_'l
us = 4)is __ ax [Ol' q- l)-l-('q= -- 1) (_lvl -- v=)]

(4.189)

where

A)= 4)1s q-au ['q (Tls--1) 8 +(1 q-vs q-"q=--'q_v2)(1-b 12_)] +

' {+ 4q'-- a_, [(n' + 1) + (n 2-- l)([_,n -- v.-)l 2n2aL'a_3_ (n2 -- l)--

h2

- 1_.. h-_lu+ _o + ,1'0 - _,)ll4n'- _,,o +,, + ,_'- n' _)) }-

The deflections w 2 and the stresses a2, o,2, _', o;_ are given by (4.183).
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An annular plate

and reinforced by a

Letting in (4.188) 6._, we obtain

v, ---_o {In'(] -- vp+ (l + _)l _o_ 2_:}

(l + v=) + n'_ ( l -- v:)

u;= (l +v=)+_lz(l--v:)-t-_pl(rl'-- L)

ys=u==O

is rigidly clamped at the outer edge

rib along the inner edge (Figure 57,d).

boy= ' (4.190)

where

A_ _ _l(,l'--1)6 + (1 + v= -{- ,l'-- _%a) (1 + 12 _) --

ho_ (1+ v, + n'--_zv=)'
h_ (1 q" v= "k tl= -- 'rl"V=)"q-P_TI('q= -- l) "

The annular plate shown schematically in Figure 57,b is

reinforced by a perfectly rigid ring or core at the inner edge.

Letting in (4.188) 5_, we obtain*

_ o_ (] - _')_,_'°-2qv?, I

Jyz=Uz=u==O

(4.191)

The plate shown in Figure 57,b has no outer rib. The

solution is obtained from (4.188) by setting 6, = 0, i.e., writing -- as_ for as.

An annular plate is reinforced along the edges by ribs

symmetrical to the middle plane, and simply supported along the circle

• =0 (Figure 58). The solution for this case is obtained from (4.171) by

substituting, in addition to (4.187), also h0=h, = 0 (the same result is

obtained from (4.188) for h0 = 0). We finally find that u, = u= = 0 and that in

the expressions ¥, and ¥= in (4.188), As has to be replaced by

A n = a6[t](Tlt- 1)6 -}-(I -}-v= nL q'-- n%=)]-- 4112. (4.192)

Bending stresses only act on the plate in this case. l_his problem was

discussed in ] 31] for certain cases of loading. If in addition, b or b.

vanishes, we obtain the solution for an annular plate reinforced, respectively,

only along the outer or the inner edge by an elastic rib symmetrical to

the middle plane (cf. §§ 5, 6 of Chapter III).

Circular plate with reinforced edge

A circular plate of uniform thickness, reinforced at the edge by a thin

rib, is simply supported along the circle 'r = {_ (Figure 59) and loaded

" If w° is the deflection of a smooth annular plate clamped along the edge r = Rlor_" = R, _e must set in

(4.190) and(4.191), respectively, _ _ 0 or _ = 0.
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axisymmetrically. Setting hn=_=_l----0, v,=v2 =v, _=_.= l, hL=h2=h,

and 'l -_ _ in (4.171), we finally obtain

(1 + v) h.
_,--=_? = u, =o. ._= i:.(_:vTl__ v2

(I + v)(l + v + 132)_,_
¥. = __ h2

121_2_(1 + v) + (1 + v + 8,)(1 + v + 1_2)

(4.1J3)

6. bo

FIGURE 58. FIGURE 59.

If the plate is supported along the edge r= R, , which is thus fixed ([52= oo),
we obtain

(] + v)v_ I
_2 = -- -- --

o.+,,++(, •
'yl= Ul = t/2= 0

(4.194)

If the stiffening rib is symmetrical to the middle plane of the plate (h. = 0),
then

(I+ v)_0 (4.195)
Ul=U2=_'l=0, _/_=_,+ l+v"

Example. For the homogeneous plate of uniform thickness(v,=vs=

v = 0.3, hi = _ = h) shown in Figure 55,b we have, for e = R,, _ = c_, plotted

the dimensionless magnitudes w I, w_, _1, °,2, °02, _1, _r2, %2 from (4.183) and

(4.184) (Figures 60 to 67). These magnitudes do not depend on the load

h0
but only on the parameters _-, _, '1, andS. They determine, except for

known constant factors, the additional stresses and deflections due to the

embossing, under an axisymmetrical load.

Theembossingweb (cf. Figure 51) is assumed to have a rectangular

section with sides b and 2%. According to (4.169a), we have

EF (! -- v_) h_
_ = "2 _ (4.196)

61 E_ I 4_2
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The curves in Figures 60 to 64 were plotted for different values of _1=_-,

Yl which varies from 0 to 1 for
as functions of the parameter ¥_ = l-- y0

0_6_ co and 0_<_ _ co.

_ q=1,S

l I

0.25 0.5 0.75 1.0

1.0 /

I q:_O 2;

0 0.25 0.5 0.75 ZO •

FIGURE 60. FIGURE 61.

Some values of "_;, calculated by (4.184) for v =0.3 as a function of

h0
,6, ands, are given in Table 18,

l,

Figures 65 to 67 show curves of _, (_r2),=_, and(o0_),=Rfordifferentvalues

of _, as functions of the parameter _, ((4.1961) whose value is usually less
than unity.

The magnitudes 502, °:2, and 6_2 are much smaller on the circle r = R, than

on the circle r=R. The magnitudes, plotted in Figures 60 to 67,

together with the basic stresses and deflections of the plate without

embossing (which are assumed as known for given loads), determine by

(4.183) the normal and bending stresses, and the deflections of an embossed

plate.

The influence of the embossing on the stresses and deflections of the

plate was studied in /166/, /32/, /33/, for two cases of loading.

It was shown that the embossing increases considerably the rigidity of

the plate and reduces the calculated stresses. To each particular load

there correpond an optimum radius and depth of the embossing.

3.0 I q_3o. _'J '

0 0.25 _5 0.75

FIGURE 62.

1.0

3.5
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_
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FIGURE 63.
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TABLE 18

horn

0,I [ 0.2 0.3 ( 0.4 0.5 I.O

8=0.01

1.0 0,338 0.661 0,813 0.885 0.923 0.980

1.25 0.250 0.565 0.744 0.838 0.889 0.970

1,5 0.203 0,499 0,690 0.798 0.861 0.961

3.0 0.127 0,361 0,558 0.691 0.777 0.933

5.0 0,112 0,327 0.520 0,658 0.750 0.923

I0 0.106 0,312 0.503 0,642 0,737 0,918

6=0,1

1.0 0.440 0.690 0.822 0,889 0.925 0.980

1.25 0,300 0.584 0.748 0.840 0.891 0,970

0.241 0.515 0,697 0.801 0.9611.5

3.0

0,862

0.163 0.381 0.568 0.696 0.780 0.933

5.0 0,149 0.350 0.532 0.664 0,753 0.923

lO 0,144 0.336 0.516 0.649 0,741 0,919

6=1.0

1.0 0.781 0.833 0,881 0,914 0.938 0.980

i,25 0.523 0.690 0.782 0,862 0.902 0.971

1.5 0.469 0.624 0,745 0,828 0.874 0.962

3.0 0.402 0.523 0.643 0.736 0.802 0.935

5.0 0,389 0.503 0.620 0.713 0.781 0,925

10 0.384 0.495 0.610 0,703 0.772 0,922

Let a uniformly distributed load q= const, act on the plate shown in

Figure 55,b. For

b o 1 h o

R-q=_ ' -h--= I, v =0.3, 71= 1.5, (4.197)

and E,=E_=E we obtain from (4.170) and (4.196):

6 = 8 _-_°x(_)' (1- v2)= 0.364, [31 = 0,091. (4.198)
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For this value of 0 we obtain from Table 18 by interpolation:

¥[ = 0.961. (4.1 99)

From the curves for _i = ].5 in Figures 60, 64, 65 we find the values of

wzI,=0,a-z,and _: corresponding to the values of ¥[ ((4.199)) and {}z((4.198)).

_t IT=.0 --'-- 0.607. _, = 1.029. at = 2.716. (4.200)

For a hinged circular plate without embossing, subjected to a uniform

pressureq, we have (cf. /142/, p. 320)

w? --o = 0.0637 qR_, qR_l
O ¥o= -- 0.08725 _. h_! I,=o = 0.20625 qR_. (4.201)D

Substitution of (4.200) and (4.201) in (4.183) yields:

maximum deflection at the center of the embossed plate:

wl I,=o-- (0.0637 -- 0.0530) qR_ = 0.01O7 qRl4; (4.202)
D D

maximum bending stresses at the same point:

+ _,1 I,=0 = + o',! I,=0 ,= (1.2375 -- 0.9804) _ = 0.2571 qRI2- (4. 203)
h" '

normal stresses at the center of the plate:

/h^\ 12
_,_ = o';, o'_' (-_-].0.08725.0.039-_ (1 -- 'v')qR_= = -- 0.1009 qR__L (4.204)

2

h"
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Adding (4.203) and (4.204), we obtain the maximum total compressive

stresses at the center of the embossed plate:

D2
a ------ (0.2571 -_-0.1009) q"l -- _ 0.358 q"/

hS hS
(4.205)

We give below the values of the maximum deflection and stresses at the

center of a homogeneous circular nonembossed plate, hinged at the edge

(Figure 12). The plate is reinforced at • = _ by a rib of the same material

and the same rigidity 6 ---- 0.364 (4.198), located symmetrical to the middle
plane (cf. § 12 of Chapter II):

wl I,--o = (0.0637 -- 0.0139) ----0.0498

2
+ a = (1.2375 -- 0.2579) qRt = 0.9796 qR_ l

hs _ l

(4.206)

Comparing (4.206) with (4.202) and (4.205), we find that the ratio between

the maximum deflections of the two plates is 1 : 4.65, that of the stresses at

the center being 1 : 2.74. This shows that the embossing increases both

rigidity and strength of the plate.
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Chapter V

INVERSE PROBLEMS OF PLATES WITH HOLES

WHOSE EDGES ARE REINFORCED BY THIN RIBS

In Chapters Ill and IV we discussed the direct problem of plates

reinforced around holes, which consists in determining the state of stress

of thc systcm when the shapc of the hole and the flexural and torsional

rigidities of the stiffening rib are known.

In this chapter we consider some inverse problems.

§ 1. FIRST INVERSE PROBLEM*

An isotropic or anisotropic thin plate of finite dimensions has one or

several holes or grooves. The edges of the holes or grooves are reinforced

by thin elastic isotropic ribs, whose flexural (A) and torsional (C) rigidities

are in the general case functions of the arc length s measured along the

axis F of the rib. One of the principal axes of inertia of the cross sections

of each rib lies in the middle plane of the plate. The x- and y-axes lie in

the middle plane, while the Z-axis points downward.

We define an elastic stiffening rib or bar system as equivalent if, at a

given load on the plate, it fully compensates the missing part of the plate,

i. e., if the condition

w(x, y)_ _(x, y), (5.1)

is satisfied, where _(x, y) is the basic deflection of the middie plane of

the solid (nongrooved) plate, and w(x, y) is the deflection of the same plate

under the same load, but with a hole (groove) whose edge is reinforced by

an equivalent rib.

Hence, an equivalent reinforcing system completely prevents stress

concentrations near the holes or grooves in the plate.

The first inverse problem consists in determining the flexural (,4) and

torsional (C} rigidities of an equivalent bar system, if the basic deflection

and the shape of the holes (grooves) are specified.

Consider first a plate having holes with smooth edges. It is obvious

from (5.1) that, without loss of generality, we may consider a plate with

* The first solution of this problem is due to N. P. Fleishman, who presented it at the XXII-th Scientific

SessionoftheLeningradStateUniversity(19March1953), andpublisheditin]146[and/147/. Asirnilarproblem

in the two-dimensional theory of elasticity was later solved independently by Mansfield (/208, 209/').

Papers by Mossakovskii and Kvashi /80/, and by Kvashi /49, 50] deal with the selection of neutral

reinforcements around boles in shells of revolution.

206



onlyonehole(P), sinceotherholes,whoseedgesare reinforcedby
equivalentribs, donotaffectthebasicstatesof stressandstrainof the
plate.

Weshall assumethefunctionw°(x,y) to be known. Hence, the shearing

forces N,, the bending moments M,, the twisting moments H,, , and the de-

Ow Ow'
flectionderivatives -_- and _ are knowneverywhere in the solidplate and

by (5.1_ also in the reinforced plate, in particular on P . The symbols n and

represent, respectively, the principal normaland the tangent to r . The positive

direction in which the arc length s is measured is such that x and n form

a system similar to the x- and [/-axes.
The conditions at the joint between the equivalent rib and the plate are

all., m (s)= M., (5.2)p(s) = N n-t- as '

8w (5.3)o, (s)= o_E, o.(s) = as'

where p(s) and m(s) are, respectively, the shearing force and bending moment

with which the plate acts on the rib; 8_(s} is the angle of twist of the rib;

O.(s} is the angle of bending of the rib.

The right-hand sides of (5.2) and (5.3) are known. These conditions state

that action and reaction between rib and plate are equal, as are the angles

of rotation of the radial and tangential sections of rib and plate along P.

We have thus to determine the flexural and torsional rigidities A(s) and C(s)

of a thin elastic bar forming a plane closed curve, when the load is given

by (5.2) and the strains b_ (5.3).
The internal moment L, acting in section s of the rib, is obtained by

integrating the equations of statics for a rib element* (Figure 68):

SIr(s)-r(,,)l x p(o)_do. (5.4)Z= x  ,Co =Co do+ o" "

where _, _ are, respectively, unit vectors in the z and T directions; _o

and No are arbitrary integration constants; _(s) is the radius-vector of

point s. We shall use the following approximate relationships (cf. (2.10)):

L, = A (s)6%,

L, = C(s) _o,, (5.5)

where L, and L, are, respectively, the internalbending and twisting
moments, being the projections of the moment L on n and _; _o_ and t_, .

are the changes in curvature and torsion of the rib, determined by ClebschVs

formulas (2.14):

d
8_a, = d On-}- qe._, 8o),_.= _ O,t -- qOn. (5.6)

* When considering the equilibrium of the rib under the action of a load imposed by the plate, the twisting

couples should better not be replaced by equivalent transverse forces, The authors realized this only after

the book had already been set.
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Hereq=q(s) is the variable curvature of the rib axis P. Substituting (5.6)
in (5.5) and using (5.3), we obtain for the case when Fis a closed smooth
contour:

Ln , C (s)= L_ (5.7)

A(s)= r aw a'ml [ aw a,w I •

Z 1 -" ml_)_-(#J

X

FIGURE 68.

Since h' 0 and _0 are arbitrary, the above solution is not unique; in fact,

by assigning other values to these constants, we obtain different rib

rigidities and internal forces at equal strains due to the same loads.

Furthermore, a solution does not always exist, since by their physical

meaning, the functions A(s) and C(s) must have finite and positive values.

The periodicity condition for the strains, rigidities, and internal forces
of the rib are satisfied for any values of N0and L0.

We conclude on the basis of (5.1), (5.2), and (5.3), that the elastic strain

energy of a rib, whose rigidities are given by (5.7), equals the elastic

strain energy of the part of the plate replaced by it.

If the holes in the plate have piecewise-smooth edges, (5.7) can be

applied separately to each of their parts. At the corners the relevant

compatibility conditions have to be satisfied (cf. §§ 3 to 6 of this chapter).

When considering the equivalent reinforcement of groove edges, we

must satisfy the condition that no moments or shearing forces act on the

end sections of the stiffening bar, as will be shown below (cf. § 7).

§ 2. EQUIVALENT REINFORCEMENT OF A CIRCULAR
HOLE EDGE

Consider a circular hole of radius p. We project the moment vector

(5.4) on the n and _ axes. Introducing polar coordinates (r, 6) with origin at
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thecenterof thehole, weobtain

I

L, = L¢, cos 0 -- (RN o -- Lo_) sin 0 -- R _ [m (a) --

Rp (a) ] sin (0 -- a) da

Le ------ Lo, sin 0 "t-RNo -t- (Lo_ -- RN o) cos 0 +

0 o

+RI,R,<o)-m<o>]cos<0-o>do-

(5.8_

1
Substituting in (5.7) q=_- = const., we obtain

A (0) = L, C (0) = L,
I I Ow l o_wl ' [lOw i o_ I •
[_-'_- + _'_Jr t_ _ -_-'O-_lr

(5.9)

Let us consider some examples.

a) A circular cylindrical anisotropic (orthotropic) plate with a hole in

the center is loaded symmetrically to its center which forms the pole of

anisotropy. The central part of the solid plate would have been subjected

to pure bending, the deflections being(/64/, §54)

tdD= Bt I+$ -[- const. (5.10)

p = _/:-_0; D, and D, are the flexural rigidities of the plate referredwhere

the 0 and r axes at the point considered; B is a constant.

We have

m(O) ------ D, (t_" -t- _-W')r---- -- D,BR_'a (l -l-fl)(_ d- ve) ----m ,

(5.11)

where vl is one of the principal Poisson ratios.

Substituting (5.11) in (5.8), we find

L, = Lo, cos O_ (R.'Vo- Lo,)sin 0 + mR(cos 0 -- 1).

Li = -- 4, sin 0 -t- RN'o -}- (Lo, -- RNo) cos #-- mR sin O.

For the state of stress of the rib to be symmetrical to the center, we

require that

Lo, = -- mR, Loo = RNo. No = O.

We then obtain

L,= --mR, Le =0. (5.12)
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Substitutionof (5.10)and(5.12)in (5.9)yields

,4= R/9, (p + re), (5.13)

0
C = _ is arbitrary.

Thus, in the case considered, an equivalent rib exists. Itsflexuralrigidity

is constant, being given by (5.13), while its torsional rigidity does not affect

the solution.

In the particular case of an isotropic plate D e =D,=D, re=v, [_= l , and

we obtain from (5.13)

A = RD(I "Jr v). (5.14)

This same result was obtained in §§ 3 and 4 of Chapter III by other

methods for certain cases of axisymmetrical bending of an isotropic plate.

b) A circular isotropie plate is loaded symmetrically to its center and

has an eccentric hole (Figure 69). No loads act on the circular area con-

centric with the plate, which encloses the hole. If the plate were solid, its

central load-free part would be in a state of pure bending, its deflections

being

= Be' + const,

where 0 is the distance between points of the middle plane and the center

of the plate. Introducing polar coordinates (r, 0) with origin at the center

of the eccentric hole, we obtain

w* = B (r' q- 020q- 2r00 cos 0) + eonst,

where O, is the eccentricity of the hole; B is a constant.
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Wehave,accordingto(1.16)and(1.55),

--_'}-'_- r' a82]r-- 2BD(I +v)

p(6) --Da-O/0'w l 8w l 0'w= + rT'-5_)r-0r [ 0-P-+7-" _7-

1 0 1 azm 1 '_- r= 0--D(l--v)_-._ r OraO r2

(5.15)

Substituting (5.15) in (5.8), and then in (5.9), and selecting the arbitrary

constants as before, we obtain the flexural rigidity of the equivalent rib

A =RD(I -Sv). (5.16)

The torsional rigidity of the rib is arbitrary. As ought to be expected, the

equivalent ribs are the same for equal holes, regardless of their number

and positions.

FIGURE 70.

c) A circular isotropic plate of variable thickness, with central hole of

radius R, is bent symmetrically (Figure 70). The rigidity variation of the

plate is given by D=D or', where D0= const, and m= const. If the plate

were solid, its central load-free part would be subjected to bending moments

uniformly distributed along the edge. The basic deflections of the solid

plate are (/55/, p. 68)

a-- _- +1

_o= Co r + coast (r ¢ R),
m

a---_- +1

where

_/ m z 1Co = const, a = 1 -- my -t- -_-. m _; _--.

Thus,

o_sOa,wo a,wo ^ awo _ _-_._
-_- = a-D_=-_ = u, -_ =--cot ]

,,, -_-,.-, _.m(O) = (M,)r = DoCo (a-- _ + vl R
I

p(O)=O. Le=O, L,=-Rm(O) ]

(5.17)
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Substituting (5.17) in (5.9), we obtain the rigidities of the equivalent rib

( ° ) 0A = DOR a-- _- + v , 12 ------ff is arbitrary.

In the particular case of a plate whose thickness varies linearly, we have
l

m=3; forv=-_-, we obtain

l
A _-._R(D),_R. (5.18)

In this example the equivalent rib replaces a disk of variable thickness.

d) A bounded rectangular isotropic plate is in a homogeneous state of
stress. The basic deflections are then

= ax"+ bxy + cy', (5.19)

where a, b, c are constants.

If in this plate we make a circular hole of radius R and reinforce its

edge by an equivalent rib, the load on the rib becomes, regardless of the

position of the hole,

m(@) = (M,)r= -- D {(1+ _)(a + c) + (l--v)l(a--c) cos 20+ b sin 2Ol}l
, ! OH,, \ 2

p(0) = (N,_- _-.--_--)r= _ D(l--v)l(a--c)cos2OWbsin2Ol J"

(5.20)

Substituting (5.20) in (5.8), we obtain

L, = RDi(c--a)(l -- v) cos 20 + (c + a)(l + v) -- b(l -- v) sin 28] -I-

+ Cxcos O+ C, sin O,

L, = RD[(a--c)(l -- v) sin 20 -- b (1 -- ,_)cos 20] -F Cs-

-- Cxsin 0 -I- C. cos0,

(5.21)

where
C, = L_ -- 2RD (c + av),

C, ----Lo, -- NoR + 2bRD (1 -- v), C, = NoR -- b (1 -- v) RD.

Differentiating (5.19) with respect to r and 0 yields

R-"_-Jr (c -- a) cos 20 +(a + c)-- b sin 20
(5.22)

Substituting (5.21) and (5.22) in(5.9), and setting C. = C, = C, -- O, weobtain

A = RD (c-a)(i -- v)cos 28 + (c + a) (1 + v) --b(l -- v) sin 20

(c -- a) cos20 + (c -}- a) -- b sin28 ]C _ RD(I --v)

(5.23)

212



Equation (5.23) shows that in this case the equivalent rib must generally

have a variable rigidity. The coefficients a, b, e are given in Table 19 for

two different kinds of load acting on the plate.

TABLE 19

Bending by moments Mxand M_ '_M v --hi x vMz-- M u

acting on the edges _ 0 2D(I "_'-vvi)

Torsion by twisting moments H=

= eonst, distributed along the edges 0 I_1o

If the plate undergoes pure bending, i.e., Mz=Mv=M andH=0, we

obtain from (5.23) A = RD(I+v) while C is arbitrary. This coincides with

(5.16), as ought to be expected.

If the plate undergoes pure torsion, i. e., M= = Mu = 0 • then

A=RD(I--v), C= RD(I--v). (5.24)

This result was obtained by a different procedure in § 3 of Chapter III.

In the case of combined bending and torsion, i.e., for Mz = M_ =/14 and
H_0, we have

- (1 -- _') (Hsin20-- M) IA Ru
(i + v) H sin20 -- (1 -- v) MI.

C = RD (1 -- v) J

(5.25)

In this case there might be no equivalent rib. Since the rigidity A ((5.251) is
positive and finite, we must have

If the plate is subjected to bending moments M= and My = 'lMx acting on the

edges while H = 0, an equivalent rib exists only when

1
v< tl< --_-. (5.26)

This shows that when bending moments act in a single sense 01 = 0), and

( I or,l= v) no equivalent ribalso in the case of cylindrical bending _i =_

exists.

Finally, when Mx=--Mu, i. e., I1------ l and[//= 0], we obtain from (5.23)

A=C=RD(I_v), as ought to be expected according to (5.24).

From (5.13), (5.16), (5.23), we obtain the dimensions of the equivalent

rib by the method described in § 10 of Chapter III.

As an example, we shall determine the dimensions of the equivalent rib,

of variable rectangular cross section, for a plate subjected to bending

213



1
momentsactingon the edges(Figure71),with _1=_, _ = 0.3.

The rigidities of the circular rib are in this case by (5.23):

A =RDO- _s) (l +

C

(i -- _) cos 20 -- (1 + lq)

_)(l- Tl)COS20-- (1 --v)(l -t- _)'

= RD(I--_).

(5.27)

Si
I 1 I I

t((,"ll?

/M/ f/
FIGURE 71.

/I.

Denoting by k the ratio "9 between height and width of the rib section,

we obtain for a rectangular section

Elakb 4 (5.28)

Here E, is Young's modulus and v, is Poisson's ratio for the rib; the

coefficient a is determined from the known solution of the problem of

torsion of a prismatic bar having a rectangular section /23/. Values of a

for various k are given in Table 20.

TABLE 20

k o k a

I

1.05
I .I0
1.15

1.20
1.25
1.30

0,14057
0,14744
0,15308
0,I_)19
0,16612
0.17173
0.17705

1,35

1,40
1,45
1,50
1,55

1.60
1.65

0,18210
0,18689
0,19144
0,19575
0,19985
0.20373
0.20742

k

1,?0 0,21093
1,75 0,21425

1,80 0,21742
1,85 0,22044
1,90 0,22332
1,95 0,22606
2.00 0,22868

ForvL=v=0.3 we obtain from (5.27) and (5.28)

A 1,3 k' 3 --cos20
= 1"3-,I--2 (5.29)_ =-g--'h- 1.3cos28 "

hl
We can determine k=- b- as a function of the polar angle 8 from (5.29)

and Table 20. Equations (5.28) and (5.27) then yield formulas for the
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relative dimensions of the equivalent rib:

;/E_-Y,,/I 3-cos2,
h- = VEt h I/ _ 2.1-- 1.3cos20'

hx I/'E"R _/ 1 3--cos20
"h= V-_ "-_kV k 3 2.1--1.3cos20"

(5.30)

Table 21 gives values of b/h and hdh for the equivalent rib reinforcing

the edge of a circular hole in a rectangular plate subjected to bending

moments Mx and My = 0.5Mx (Figure 71).

TABI,E 21

eo

o
5
lO
15
2o
25
3o
35
40
45

0.806
0.810
0.820
0.835
0.854
0.875
0.897
0,919
0.941
0,961

1.458 50
1.448 55
!.420 60
1.380 65
!.333 70
1.287 75
!.243 80
i.204 85
1.170 90
1.141

0.979
0.995
1.009
1.021
1.03|
1.037
1.043
1.046
1.047

1.117
1.097
1.081
1.068
1.057
1.048
1.043
1.040
1,039

§3. HOLE-EDGE REINFORCEMENT OF A

RECTANGULAR PLATE SUBJECTED TO BENDING

MOMENTS ACTING IN TWO SENSES

A rectangular isotropic plate of finite dimensions is bent by applying at

the edges uniformly distributed moments M= andM u. The hole in the plate

is bounded by the arcs of two intersecting circles of radii RI and R,. The

location of the hole is arbitrary (Figure 72). The x- and y-axes are

parallel to the axes of symmetry of the plate. It is required to solve the

first inverse problem (§ 1 of this chapter).

The deflection function has in this case the form ]118]

where

w=ax' + cy', (5.31)

vM_-- M,

vM_ -- M#
c ---- 2D (1 _ _')'

(5.32)

D is the flexural rigidity of the plate; v is Poisson's ratio.

We introduce two polar coordinate systems (rb 8,) (i = l, 2) with origins,

respectively, at the centers 0,, 0 of the circles. The polar axes are
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parallel to the x-axis. The bending moments m(Rt. 8t) and the shearing

forces p(Rt. St) with which the plate acts on the equivalent rib BBtB" are

obtained from (5.20) by setting b = 0:

m(R,.0,)= -- D[(1+ _) (a+ c)+ (1-- _) (a-- c)cos20t], (5.3 3)

D (I -- _) (a -- c) cos 28t. (5.34)p(Rt, St)

In addition, the plate acts on the reinforcing ribs at B and B' with two

concentrated forces each, normalto the xy plane. These forces are caused

by the twisting moments H,, acting at the ends of the intersecting arcs. The

forces acting on B and B' from the right are, respectively,

P, = (it,,)8 = (l -- v) (a --c) D sin2(% --%)
P;= -- (H,,),, = (1-- _)(a-- c)Dsin2 (_-Z-(Po)J'

(5.35)

and from the left

Ps = -- (H,,)B = (1 -- v) (a -- c) D sin 2 (%. -I- qDo)I

P_,----(H,,) u, = (I -- ,_) (a -- c) D sin 2 ('1_ -- '_o) I"
(5.36)

The positive direction of the forces Pt, P', (i = i. 2) is here downward (along

the Z-axis). The bending and twisting moments L,t and L,,(i == 1.2), acting
in the sections of the i-th rib BB_B', are obtained from (5.21) by setting

b _ C, =., C: .---C, = 0

L. =, R_D[(c-- a)(l -- v)cos20 t + (c + a)(I + v)] _. (5.37)
Lit = RtD (a -- c) (I -- v) sin 28t /

,y

FIGURE 72.

In addition to the moments (5.37) the shearing forces

It

Nt '=-- Rt _ P (Rt. _l)d_t "_ -- D(l--v)(a --¢) sin28_.
(5.38)

act on the stiffening ribs.

In fact, if we add to (5.38) the unbalanced force (5.35) or (5.36) duetothe

twisting moment H,,, the total shearing force vanishes, as will be proved

later.
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Substituting(5.31)and(5.37)in (5.7),weobtaintheflexuraland
torsionalrigidities of thecurvedbarsof theequivalentsystem:

(1 --T1)cos 20_- (1 -F "_) ]A_ = R,D (1 + v) (I -- n) cos2e_-- (! -- v) (1 _ (I -- vD ,

JCi = RID (I -- v)

(5.39)

where _ = MulM =.

A necessary and sufficient condition for Al to be finite and positive is

v<,l< 1. (5.40)

The cross-sectional dimensions of the curved ribs having the rigidities

(5.39) are determined as explained in the preceding section. These

dimensions are generally variable, except when '1 ----4-1. When 'i ------ l, i e.,
for M==--Mu, we have

Al = Ct = R,D (I--v). (5.41)

The case 'I= 1 will be considered in detail in the next section.

Equations (5.37) and (5.38) show that the equivalent reinforcing system

is in equilibrium if the following bending moments, twisting moments, and
shearing forces act from the outside at B' andB:

Loi = -- RiD (a -- c) (1 -- v) sin 2 (q_o4- q_) I

L. = Ri/)[(c -- a) (I -- v) cos 2 ('Po 4- q_i)+ (c -t- a) (I + v)] [ (5.42)
I

Lli = -- RiD (a -- c)(i -- v) sin 2 (q_o=F q_i) [

L,_ = RiD [(c -- a) (! -- v) cos 2 (q%=F q'l)+ (c -t" aX I + v)]]

= 2( o± (5.43)Nt = D(I --v) (a --c)sin 2(,Io :]: %)

Here and below the upper sign corresponds to l-=-- I, and the lower sign to

i=2. The positive directions of moments (5.42) are shown in Figure 73.

The forces N. and N_ act upward, and the forces N; and N 2 downward.

The forces (5.35) and (5.36) act at B and B" in addition to the forces (5.43)

and moments (5.42). The principal force vector P,, and the projections

M u and M, on thex,- andy,-axes (Figure 72) of the moments applied at
point B are

P, =Pt "FP,--Ns -{-N_=0

IMa = Ln cos qh -1- L¢_cos _, "4- Le2 sin q_,-- Le, sin _1 =

=DQ[(c--a)(l--v)cos2_o-l-(cd-a)(l-l-v)] ],
MA = L,I sin _l -Jr-Lel cos q_l-- L,_ sin q_, -}- Le2cos % =

,= DQ (c--a) (1 --v) sin 2%

where Q is the distance between O and 0,.

We similarly find for point B'

(5.44)

p'.= o. M', = -- M., ._ = -- M,. (5.45)
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FIGURE 73.

The moments Mu, M, and M'u, M_ must be applied to B and B' from the

outside. A rectangular bar is therefore welded-in between these points.

This bar is subjected to twisting moments Mk,M _ and bending moments

Mu, M'. The so far unknown flexural and torsional rigidities A*. C* of this
bar are determined from the condition that the strains and deflections of

plate and bar atB andB'be equal. Atx,=0,y,=-4-d

__._.= _ (546)
@, ay,,'

0x_l (5.47,B_ _ q_*'
B o

w. = w, (5.48)

where w, is the deflection of barBB';

section at B and B'; 2d=BB'.
We have

cp. is the relative rotation of its

w, =_-_ y, + C'y,-I- C', (5.49)

where C' and C" are integration constants to be determined.

Substituting (5.49) and (5.31) in (5.46), we obtain two equations from
which we find:

A* 1 (I --'@cos 2,_o--(1 +n)
= -_ De (1 -- v2) (,iv -- 1) si,,_ '_o + (v -- ,I) cos'-'% '

C' = (a .-- c) R, cos q_,sin 2_po.

(5.50)

(5.51)

It is easily shown that A* is positive and finite for any % and _ < I1 < v-n

[cf. (5.26)].
We determine C" by substituting (5.49) and (5.31) in (5.48).

The angle of twist cp, is

2M,d
_P*---- C* " (5.52)
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Substituting (5.52) and (5.31) in (5.47), we find the torsional rigidity of

the bar:

C* = QD(I--v). (5.53)

FIGURE 74.

The first inverse problem has thus been solved for the case considered.

It is interesting to note that C* is a constant and, unlike A*, is independent

of the ratio of the bending moments acting on the plate and of the orientation

g C* remains arbitrary,of the hole. If _= l(pure bending) or %=0 or % =-_,

since in these cases the twisting moment M,(5.44) vanishes, and the bar

BB'is not subjected to torsion. We obtain from (5.50):

for %=0 A* = QD 'I(I-- v:)
1]--v

A* = eu-T-_-- _for q%= _-

If %=_-, then

(5.54_

A* = QO(t + v) (5.55)

I /

• yy

FIGURE 75. FIGURE 76.
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The formulas obtained for the rigidities A_, Ct((5.39)).A*((5.50/), and

C* ((5 53)) remain valid also for a hole bounded by arcs of several inter-

secting circles and reinforced both by ribs and by bars similar to the bar BB'

(Figures74to76). We determine the rigidities of, e,g., bars m,m2, rn2m3, and

m,m,(Figure 76) from (5.50_ and (5.53), setting Q= R, assigning to % the

values , 0, -_- respectively.

§ 4. PURE BENDING OF A BOUNDED PLATE

REINFORCED AROUND A HOLE

A bounded isotropic plate of arbitrary shape is subjected to uniformly

distributed bending moments M along the outer edge (Figure 77). The hole

in the plate has the shape shown in Figure 72. The solution of the first

inverse problem is in this case given by (5.39), (5.50), and (5.53), with

I1= 1, i.e.,

M

a ----c 2D(I -t- v)" (5.56)

The flexural rigidities (5.39) of the curved ribs of the equivalent reinforcing

system are

At=R,D(I -l-v) (i= 1,2). (5.57)

The flexural rigidity (5.50) of bar BB" is

A* = _D(I + v). (5.58)

The torsional rigidities C_ and C* remain arbitrary, since no stiffening rib or

bar undergoes torsion. Hence, all the ribs BB_B'. BB2B', and bar BB"

have uniform cross sections. Let these cross sections be rectangular,

their widths and heights being, respectively, h,,bL; h2,b,; h.,b.. We then

obtain from (5.57) and (5.58) the following equivalence conditions for the

reinforcing system:

b. = _ _/ _:, b, = _ _2 -_-, (t = l, 2), (5.59)

where h is the thickness and the modulus of elasticity of the plate;

E,, E,, E, are the moduli of elasticity of the stiffening ribs and bars,

respectively.

: ( / :

FIGURE 77.
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SettingE, = E_. = E, and h, --- h, =h. , we obtain from (5.59):

b, b_ b. 1 (h _' E
= _ = -_ = l_-_v _.] E,. (5.60)

We further require that plate and reinforcing system be of equal strength:

k_ -6M-
hS I=_fL,,i = 6 L, 6b--_ [ d = _ [M,,I. (5.61)

where k_ is the ratio of the permissible stresses for the materials of the

rib and plate; L,(i=:l,2) and M, are given by (5.37) and (5.44) fora:=c.

Substituting these expressions in (5.61), we obtain

bl b, b, h' !
R--_= _ = _- = -_.-_. (5.62)h, k_

If_=_b' b, =-_'b* we obtain from (5.60) and(5.62)

h, = h, = h, = _, _ V_" (5.63)

§ 5. TORSION OF A RECTANGULAR PLATE

REINFORCED AROUND A HOLE

A rectangular isotropic plate is subjected to twisting moments Hx_ = H

distributed uniformly along its edges. We shall solve the inverse problem

of § 1 for a hole having the shape shown in Figure 72.

The deflection function is

= bxy, (5.64)

where

b = # (5.65)
D(I -- v)"

We obtain from (5.21), (5.20), and (5.23)

Ln = RIH sin201. Lol =R_H cos 20._]

Nl = _ H cos 20_ _ (5.66)

A_--CI=R_D(I--v) (i= 1,2). (5.67)

The moments and shearing forces, which must act at B on the stiffening

ribs BB, B' and BB_B', are

L,I = -- RIH sin2 ((Po:[:: q)_)/

Lel--R_Hcos2(_o=F?l) _. (5.68/

/

N, = --flcos2(% :F_,) J
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Thepositivedirectionsof themomentsareshownin Figure 73. The

force Nl acts upward, and the force N, downward.

In addition, the plate acts on the rib at Bwith two concentrated forces

caused by the twisting couple acting at the ends of the intersecting

circular arcs,

P_ -_ 4- (H,,) a = 4- H cos 2 (cpiT q)o) (i = 1, 2). (5.69)

The principal force vector, and the components of the monlents (5.69) acting

at point B are

P, = 0. Mu = -- H(?sin2_po.M, = H_cos2%. (5.70)

We similarly find for point B'

P',=o, M:.=--M, M;=--M,. (5.71)

We apply at B and B ° the moments (5.70) and (5.71) by inserting between

these points a straight bar possessing flexural rigidity A* and torsional

rigidity C*. We determine these still unknown rigidities by requiring that

strains and deflections of plate and bar be equal at B and B'. Proceeding

similarly as in § 3, we find finally

C* =A* = QD(i --_). (5.72)

n
If _o =0 or _o = "-_, then Mu = 0 and the flexural rigidity is arbitrary, since

n
the bar BB' undergoes no bending. ,Similarly, if _0 = T then M, = 0 and the

torsional rigidity C* is arbitrary.

All the results remain true when the hole has a more intricate shape,

e.g., is bounded by several arcs of intersecting circles (cf.,for instance,

Figures 74 to 76).

§ 6. BENDING MOMENTS ACTING IN ONE SENSE ON A

RECTANGULAR PLATE REINFORCED AROUND

A HO LE

A rectangular isotropic plate is bent by applying uniformly distributed

moments My= M. The hole is located anywhere in the plate and has

the shape shown in Figure 78. The deflections of the plate are

w = aLx* + a2y 2, (5.73)

where

_,M M
at---- 2D(l--v*)' a2 = 2D(l--v=)" (5.74)
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In viewof thearbitratinessestablishedin §1 ofthischapter,andalso
for reasonsof symmetry,weassumethattheshearingforceandthe
twistingmomentactingonthestiffeningrib vanishatBo:

while the bending moment is

_=,Vo=O. (5.75)

L0,= aI,M. (5.76)

where a is a still unknown dimensionless coefficient, l, is the half-width

of the hole. The factor l, has been introduced for convenience.

8' _ Lr

FIGURE 78.

We shall now consider the different parts of the stiffening system.

For part BoB, m(s)-_p(s)=O, L_ =0, L.=al, M]

O_w Ozw_ I "q_O, --_-_=0, _s_ =2a2
(5.77)

Substituting (5.77) in (5.7), and taking (5.74) into account, we find

A=allD(l--v 2) C= 0
O"

(5.78)

Hence, C is arbitrary.

a must be positive.

For part BLB"

Part BoB_ undergoes only bending, The coefficient

m(s}= Msin2_, p(s)=O. (5.79)
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In addition, the plate acts on the rib at B, with the concentrated force

p 34.
= (H_,)8,=_-s,n2q_ directed downward. Therefore

Ln = 2M-- (al -- x,) sin 2_,

L, =/14 (al -- x,) sin',_,

where x, is the distance of the point considered from B,.

For this part

q = 0, _s_- = 2(a, sin'_o+ a,cos'9)

___ = (a,- a,)sin2_0 I"
ono$ /

(5.80)

(5.81)

Substituting (5.80) and (5.81) in (5.7), we find

yr. sinq_ cosq_ }
A----(at-- x,)D(l -- )'_d_*_Z _-_2,¢ . (5.82)

C = (al--x,)D(l-- _)tg_

The rigidities A and C of part BtB'vary linearly. A necessary and sufficient

condition for these magnitudes to be positive and finite for all 0 _ x, _ l is

!

a_l. tgttp < _. (5.83)

At point B' the plate acts on the reinforcing system with two concentrated

forces, due to the twisting moments acting at the ends of parts B,B' and

tt4
BIB'. Each of these forces isequalto P=(H_,) 8.=-2-sin29; hence, the total

concentrated force isMsin2_, acting upward. We assume for parts B,_B; and

BIB" the same distribution of internal forces and moments, and the variation

of the rigidities, as for parts BoB t and BtB'. We then find that the following

moments act at B' both from the right and from the left:

L,=--L;-_Ml, ta--l)sintp. L n =L_ = M/t (a -- l)cos _. (5.84)

The positive directions of these moments are shown in Figure 78. The

x- and y-components of their sums are:

_4.'.= (a', -- L,) sincp-- (L, + L;) coscp[
M_ = (L, + L_)costp+ (L'_-- L,) sincp/"

(5.85)

Substituting (5.84) in (5.85), we find

M'_ = --2Ml,(a-- I). M_ =0. (5.86)

It is easily shown that the principal vector of the transverse forces acting

at B'is zero. The condition of symmetry relative to the x-axis means
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that a moment must act at B whosex-component isM, =--M_. We therefore

insert an elastic beam BB', subjected to pure bending by the momentsM.',

and M._ acting at its ends. We determine the flexural rigidity A, of beam

BB' by requiring that the following condition be satisfied at points B and B':

aw, aM

0-7 =_" (5.87)

This yields

M.'.
A,= _ = 2t,o(i--v')Ca--l). (5.88)

The torsional rigidity of beam BB' is arbitrary. The coefficient a _ 1

should be selected in such a way that the rigidities of stiffening bar and

ribs satisfy design and strength requirements.

Obviously, no beam BB'exists when a = I.

Since, according to(5.77), the plate transmits no loads to ribs B,B2and

B_B'_, they need not be welded to the former.

The stiffening ribs, whose rigidities are given (5.78) and (5.82), are

dimensioned in the same way as in § g of Chapter III. As an example we

shall consider ribs of rectangular cross section(bxhL). Table 22, which

C 82

complements Table 14, gives values of e, and e,[cf. (3.189)], and -_ =_-

ewo a*ue o*.oi  oos
to width.

TABLE 22

! .15
1.16
1.17
1.18
| .19

1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.20
1.30

0.1267

0.1301
0.1335

0.1369
0.1404
0.1440
0.1476
0.1513
0.1551
0.1589
0.1628
0.1667
0.1707

0.1748
0.1789
0.1831

0.1843

0.1873
0.1903
0.1933
0.1%4
0.1994
0.2024

0.2055
0.2086

0.2116
0.2147
0.2178
0.2209
0.2240

0.2271
0.2302

0.5593
0.5538
0.5484
0.5431
0.5378
0.5326
O. 5274
0.5223
0.5173
0.5123
0. 5074
0.5025

O. 4978
O. 4930
O. 4883
O. 4836

0.5346
0.5294
0.5242
0.5191
0.5141
0.5091
0.5042
0.4993
0.4945

0,4897
0.485O
0.4804
0.4758

0.4712
0.4667
0.4023

For ribs like BjB'(Figure 78) we have by(5.82), for a=landq0=45°:

C ]--'v

A = (l --x.)D(l -t- v), C = (l--x.)D(l --v), _- = 1 + "_ '
(5.89)
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WithA =E d=lE,h_b, we obtain from the first equation (5.89) [for E=E,]:

O=h _ ._- I- i--,,"

C
In addition, for v = 0.36 we have _- = 0.4706 by (5.89), and we find from

Table 22, by linear interpolation:

h--AL_ 1.28, (5.91)
b--

Hence,

L

The dimensions /h and b of ribs like BtB', calculated by (5.90) and (5.92) for

=0.36, h=5mm, and/=29.2mm, are given in Table 23.

TABLE 23

l

0.0
0.1
0.2
0.3
0.4
0.5

b, tvim

7.48
7.29
7.07
6.84
6.58
6.29

I1|, mill

9.59
9.34
9.07
8.77
8.44
8.06

X= b. ]]HD
T

0.6 5.95
0.7 5,54
0.8 5.00
0.9 4.21
0.95 3.54
1.0 0.00

7.62
7.09
6.4{
5.39
433
000

The rigidity (5.78) of ribs B,B= and B;B_ (of uniform cross section),

subjected to bending only, is

A = bh_E = El, 12" (5.9 3)

Setting ht == 9.55rnm, we find b = 3.32 ram. The dimensions of the ribs

reinforcing the edges of the hexagonal hole in the plate have thus been

determined.

(
a

b

FIGURE 80.
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If we cut a number of hexagonal holes in the plate (Figure 79) and

reinforce the edges in the same way as before, the rigidities of the

corresponding elements remain unchanged, except for the beams between

two adjacent hexagons, whose flexural rigidities A: will be the sum of the

flexural rigidities of ribs BzBz and B2EI (Figure 78):

A: = 2al,O(l -- v'). (5.94)

Expressions (5.78), (5.82), and(5.88), remain valid under conditions

(5.83) when the plate in the hole is rhombic or diamond-shaped (Figure 80).

In this case the rigidities A:, C: of the bars marked by small circles

(Figure 80,b) are equal to the sum of the rigidities of ribs BB, and B_B' in

Figure 78:

sin ¢pcos_ }
A: = ID ( 1 -- v_) (2a -- 1) cos_--_-_n , cp . (5.9 5 )

C_ = ID(1 --v)(2a-- l)tg_

We can solve the first inverse problem in exactly the same way for holes

of other shapes. When a = I, we obtain from (5.78), (5.82), and (5.88) the

rigidities of ribs providing an equivalent reinforcement of the edge of a

hole having the shape of a trapezium or a triangle (the right or left half of

Figures 78 or 80,a).

Reinforcement of external recesses

The above solution applies also to the equivalent reinforcement of

external recesses of trapezoidal or triangular shape (Figure 81,a) in an

isotropic p]ate subjected to bending moments about one axis. When

a = l, no beam BB' exists. The rigidities of ribs BiB, BzB', BIB, BIB', and

BIB2 are given, respectively, by (5.82) and (5.78) for a = I.

§ 7. DIFFERENT FORM OF THE SOLUTION OF THE

FIRST INVERSE PROBLEM FOR AN ISOTROPIC PLATE

A thin isotropic plate carries an arbitrary load q(x, y}. We assume that

a region S of the middle plane xy of the plate is free from loads. We cut

out this part, and reinforce the edge P of the hole thus formed by an elastic

rib system equivalent to the removed part of the plate (§ 1 of this chapter).

For this we must solve the first inverse problem and determine the

rigidities of the members of the reinforcing system.

We assume that the problem of bending of the solid plate has been

solved. The state of stress in region S is described by two supposed

to be known holomorphic functions, _(z) and "¢(z), of the complex variable

z=x+iy.

227



f f f f f f

Bf B__ L

B r

ff(,. f f _'Y"r f"_

I i i ¢ IM_ l

b

FIGURE 81.

The boundary condition along the joint F between the plate and the

curved stiffening rib is (cf. (3.2) and (3.6)):

(5.96)

where

_v,(t,i') = 2D(l -- v){x_(t)-- t(_'(0-- _ (01-- ic;t + c; I
h,, (t, _)= D [_ Ct)+ t_' (0 + _ (t)l [

(5.97)

t is the affix of the point on F,i =_-+dx idsdtgJ=d's'dt C;, C"2 are, respectively, real

and complex arbitrary constants, x = (3 + v)/(l -- v) . The counterclockwise

direction is taken as positive on r.

The functions N, and N, correspond to the basic deflection w°(x,y) of the

solid plate and are considered as known. From (5.96) and the conjugate

equation, we obtain

c - -- D Re (iMi') ]

2 Re [N_( d _,-- i'_;v0]t.

= DRe(lJr;i,) I
A .....

2 Re IN, (_-_" N* +/'* _--_sN.) ] j

(5.98)

As example we consider bending of a rectangular plate by applying moments

M,= const, and Mu=_IM_= const, at the edges. The plate has an elliptic

hole (Figure 81,b) whose contour is given in the form
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whence

-:,-. =x-= I

_=_x) _:u,+p;x" v y,+,,x,/

(5.99)

When the same bending moments are applied to a solid plate, we have

M=(l + _q) . M_(n-- !).
q_(z)=. 8D(l+v) z. ,(z,_=4--b-Ut--;),. (5.1oo)

TABLE 24

o
0.2
0.4
0.6
0.8
i.o

A

1,608
1,585
1.516
1.410
1.265
1.071

1,485
1,470
1,42A
1,345
1.224
I. 050

b ¢_/"_Kh_,,4 e/'-z_,h
TV _-'_V _"_

1,601 I, 032
1.605 1,027
1,614 1,0ll
1.616 0.986
I. ('_1 0. 953
1.566 0.909

Substituting (5.100) in (5.97), and then (5.97) and (5.99) in (5.98), setting

C_ = C_ = 0, we obtain the rigidities of the stiffening rib:

q--k

A - D(! -- v=) l_(kx=q + 91)
/fx _(q -- v) -- .q=(vq -- i)

-- 2 2
where k - _,/% .

An equivalent rib exists if A and C are positive and finite.

in the following cases:

(5.ZOl)

This occurs

l) I < II _: v-' and k _ q;

2) _<_<t andk_,q;

3) q_O and k == t1(l-- v_)/(n-- v);

4) _== I andk== I.

Table 24 gives the values of A,C and of the corresponding cross-sectional

dimensions of the stiffening rib ( I, is the thickness of the plate; E,, g are

Young's moduli for rib and plate, respectively; h,, b are height and width

of the rectangular rib cross section), calculated for ,1 = 0.5, k = 2, and

v ---- 0.3.
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In the particular case of a circular hole (k=l), we obtain from (5.101)

the same values of the rigidities as from (5.27):

RD ( 1 -- vI) (XITI"b y2)
C=RD(I--v), A= x2(___._)__ V_(vq__ 1)"

(5.102)

§8. SECOND INVERSE PROBLEM

We shall call neutral a hole with reinforced edge in a thin isotropic

plate, which does not alter the basic deflections uf(x, y) of the plate.

Obviously, no stress concentrations arise near such a hole.

The second inverse problem consists in determining the shape of a

neutral hole with reinforced edge F, when the load on the plate and the

rigidity of the stiffening rib are given.

We solve this problem by using (5.96), rewritten as follows:

a,t" -t- a,_-b a_}q- a, = 0. (5.103)

dl
where i----_ has to be determined,

! --

The functions al, a_, a_. a4 are assumed to be known.

equation to (5.103) is

£_,+ _j +_,_ + a, =0.

5.104)

The complex conjugate

(5.105)

The system of nonlinear equations (5.103), (5.105) serves for determining
the two unknown functions t and T. Furthermore

d= t. (5.106)

Hence, the problem cannot be solved when ai and 64 are chosen arbitrarily.

If the basic stresses in the plate, i.e., the functions NI(t,T) and N2(t. t), are

known, only one of the two functions A(s) and C(s) can be specified. We

A
shall assume that only the ratio _ = X is given. To determine the unknown

functions i andS, we multiply (5.103) by2; by (5.106) we obtain

o._+.j+ j+..=o. (5.107)

Multiplying (5.105) by a, and (5.107) by a'l, and subtracting the second

equation thus obtained from the first, we obtain

(_,a,-_la,)_ + {a,a,-_',a,) i + (_,a,-_,a,) ffio. (5A06)
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The corresponding complex conjugate equation is

(_hla, -- a,aO_-t- (a2a, -- a,aO [.4- (a2a, -- "a_a,)= O. (5.109)

From (5.108) and (5.109), we find

f= ('ala, -- a=a,)(a,a, ---a,a,) -- ia,a, -- a,a,Xa_a, -- "a,a,) (5.110_

Substituting (5.110) in (5.106), we obtain an algebraic equation of the fourth

degree in A2:

bo + blA" 4- b:A* + baA* --I-b,A" = O, (5.111)

where the functions bk(k= 0. I,2.3.4) are expressed through the given functions
N, (t.7).N, (t,t')and ;_.

Solving (5.111), we find A as a function of x. y This function must be

positive.

We determine the contour equation of the neutral hole from the identity

(5.112)

Substituting for ifrom (5.110), we obtain

dy P(x,y) (5.113)
dx = }_(x. y)'

where

Q(x, y) = Re [(a_ -- a_alXasa, -- ala, -- a,a2 + a, aO],

P (x, g) = Im [(a=a, -- asatXaaa, --'ala, 4- aza: -- alai)],

are known real functions of x, y.

The one-parameter family of integral curves of (5.113) is the solution

of the second inverse problem. By (5.111) each integral curve corresponds

to a rigidityA.

This inverse problem does not always have a solution, since the contour
of the neutral hole must be closed. Certain sufficient criteria for the

existence of closed integral curves of (5.113) are given in /86, 110, 133].
A

The problem is considerably simplified if we set _ = X = 1.

In this casea,=0, while (5.110) and (5.111) become

a_,--a_ ' (5.114)

b,.-}- b,A 3 _ffiO, (5.11 5)
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where

oN, oN, '
\at at _i-" of/

(5.116)

Solving (5.115), we find

m

G=A---- (5.117)

2 _ aN, aE, aN,
at "-5i----_-" ai

Equation (5.113) assumes the form

dy.= ReN, (5.118)
dx ImNa '

where

Na =- ON_ - aNi
: NL T +Nl T

In this case the shape of the neutral hole is independent of the rigidityA.

We shall consider some examples.

a) Twisting of a bounded rectangular plate by moments H=u= H = const.
In this case

iHt
Nl-_--2iHt, Ns_l_v. (5.119)

Substituting (5.119) in (5.118), we find

dy x (5.120)
dx y

Integration yields the contour equation of the neutral hole:

x 2+ys_-R s, (5.121)

where R' is an arbitrary integration constant. The rigidities of the thin rib

reinforcing the edge of this circular hole are, according to(5.117):

C = A -----RD(I -- v). (5.122)

This coincides with the result obtained in § 2 by a different procedure (cf.

(5.24)).
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b) Bending of a bounded rectangular plate by m_vnents/H z = M-_

andMu=_M applied at the edges. In this case

We obtain from (5.118)

N,= - _ |(n+ l)_+(,l--l):l1

__ M[n--l, n+Ivl I"

const.

(5.123)

dg=_ n(l--v_) x (5.124)O_o

Integration of this equation yields the contour equation of the neutral hole

y,+ ,I(I --_) x' = _s (5.125)

where _' is an integration constant. When • < _<_- and also when _ <0,

(5.125) represents an ellipse.

-4

' II
i/

I'! \
!

, \!

!
!

-2 0 _t 2

FIGURE 82.

p-t

The rigidities of the stiffening rib are by (5.117)

I/_+ y' (5.126)
C=A,,_D(1--_') (1--*_ll '

where k-----_l(l- _,YI)/(TI--,_) is the ratio of the squares of the ellipse semiaxes.

Figure 82 shows the ratio b__of the semiaxes of the neutral elliptic holes
a

as function of 1i _ M-_Mx_ and _ = O.&
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§ 9. INVERSE UNIFIED CONTACT PROBLEM WITH

APPROXIMATE BOUNDARY CONDITIONS

By analogy with §§ 7 and 8 we formulate the problem of determining the

shape of a neutral hole in a plate, and the corresponding rigidity of an

equivalent stiffening rib when approximate boundary conditions are satisfied

on I'.

We assume that some partS, which carries no external load, is cut

from the plate, and that the edge of this cut-o_ ]._ reinforced by a very

thin equivalent rib (cf. § 1 of Chapter IV). The stresc_es in the solid plate

are considered as known. In domain S this state of stress is defined by

two holomorphic functions q_(z)and _b(z), also considered as known.

The boundary condition along the joint F between the plate and the thin

stiffening rib is given by (4.23). In the case considered the right-hand side

vanishes, while the functions t(s)and K(s), which, respectively, define the

shape of the neutral hole and the rigidity of the equivalent stiffening rib,

are unknown. Separating the real and imaginary parts in (4.23), we obtain

Re_(t, 7) = -- yK Re (P2 (I, t) (5.127)

liCe(t, h=--xKRe¢2(t, 5 (5.128)

where

¢',(t, "5= a,_5 + 7_'(t) + ¢ (t) {

¢, (t, i) --- i _}--[a_-- i_' (t) - ¢ (t)l .

*x= dx dy

(5.129)

Dividing (5.127) by(5.128), we obtain

y, = dy Re _, (t, ])
a-7-= Im¢,(t, t-)"

(5.130)

Equation (5.130) defines some family of curvesP. If these curves are

closed, F will represent the contour of the neutral hole (cf. §8). The

clockwise direction is here considered as the positive sense of describing

F(cf. Figures 45 and 46).

We have

ds
(5.131)

Substituting (5.129) and r5.131) in (5.128), we find the rigidity of the

equivalent rib:

K = -- lrn la_ (t) -t- tcp (t) -t- _ (OI

_Re[(ll +'Y )(_x + U -_Y ) la'_qCt)-'_'(t)-*(t)l }':''0 , 0 *

(5,132)

234



whcre

_= :t= 4-Y" (5.133)

and y'is given by (5.130). The plus sign in (5.133) corresponds to the two-

dimensional problem, and the minus sign, to bending like a thin plate.

These two cases willnowbe considered separately.

Generalized plane state of stress

When a,= I, the functionCdt, i) in(5.129) is expressed(/82/, p. 112)

through Airy's stress function O(x, y)=O:

O0 _ i O0.
¢, (t, i) = -aT -N)-

(5.134)

Hence, by (5.130),

du Ox
d'-Z-- -_"

o,.i

(5.135)

Integrating (5.135), we obtain the contour equation of the neutral hole

O+C=0. (5.136)

where C is a real constant.

Since the stress function is determined up to linear terms in x and y,

we can write (5.136) in the form

• t- ax -t- by -I- c = 0, ( 5.137)

where a and b are real constants.

The same equation was obtained by a different procedure in / 209[, which

contains several examples of the equivalent reinforcement of hole edges

in plates undergoing tension or pure shearing.

Bending like thin plates

3+v
For bending like thin plates, i.e. for ai------- ', , we obtain by

' l_v

comparing (5.129) with (1.77)

#o,(t, 7)=y:o(t) + t_' (t) + _(t) ffi

__ 1 4____v_).t_ 1 t o_ Ito X_ (5.138)

235



wherew is the deflection of the plate.

Substituting (5.138) in (5.130), we obtain

dg (l -- v) 0_---- 8Re _(t)

"_-= --(l--v) o_ (5.139)
+ 8Im,p(O

whence

( I -- v) ( o-_ dx -t- o-_ dy _ -- 8Re [q_(t) dT] = O, 5.14o)

or, after integration,

(1 --v)w--8 _ Re[cp (t) d}] = c, 5.141)

where c is a real constant.

If we represent the function _(z) in the form

,p(z) = p(x, y) + la (x, y),

we can write (5.141) as follows:

5.142)

(! -- v) w -- 8 S [p (x g) dx + q (x, g) dg] = c. 5.143)

This is the required equation of the contours P of the neutral holes.

As example we shall consider the problem of bending of a rectangular

thin bounded plate subjected to moments M_ and M_---- ,IMp.
We have for the solid plate

l

w ----2D (I--v') [(vMu-- Mx) x_-- (M u-- vM,)g'J. (5.144)

In accordance with (4.10), we have forw°-- -0:

Mz + Mw M,,-- M. (5.145)
,p(z)= 8D(I + v) z, )(z)= 4D(I --v) z,

whence

M=+ M v Mz + M v
p(x, y)= 8D(I + v) x' q(x, g)= 8D(I--v) y" (5.146)

Substituting (5.144) and (5.146) in (5.143), we obtain the equation ofF:

,p_-t- g'= C.

For ,1>0 this represents the ellipse

Xl y__l_
a-_ q-1_as -- 1,

(5.147)

(5.148)
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where a is an arbitrary real constant equal to the semiaxis lying in the

x -direction.

TABLE 25

i/y_

 Io Io Io,I,oI,,I, I,oI I
A/aD

O
0.1 19.00
0.2 6.837
0.3 4.81g
0.4 4.350
0.5 4.358
0,6 4.563
0.7 4.86g
0.8 5.242
0.9 5.651
1.0 6,087

3 218
3.128
2.933
2.149
2.633
2.591
2.609
2.669
2.767
2.890
3,027

1.904[ 1.3 I.,07
1.8991 1.3 1.I07

1.886[ 1.3 1.105
:1.8701 1.3 1.102

11.8571 1.3 1.098

1.8501 1.3 1.095
1.853[ 1.3 1.091
1.866[ 1.3 1.085

t 8_ll 1.3 1.081
1.9241 1.3 1.079

1.9661 1.3 1.082

O. 92891 0. 7568
o. _7a41 0.7552
0.92231 0349"/
o gl 7f_l 0. 7406
0.gO811 0.7277
()._831 0,7t 17
0.88591 0.6918
0.87421 0.6705
0.86501 0.6524

0.86591 0.6525
0.90071 0.60,15

0.6,540 I 0.6089

0.6522 I 0.6067
0.6457 I 0.6010
0,6359 [ 0.5g06
0.6215 J 0.5761
0,6034 [ 0.5572
0.5809 I 0.5338
0.5543 I 0.5060
0.5285 I 0.4805
0.52O8 0.4642

0.9208 i.215

Substituting (5.145) and (5.147) in (5.132), we obtain the variable flexural

rigidity of a thin rib reinforcing the edge of the elliptic hole:

A= aD (! -- v')]/'_
f__, , (5.149)

where

,Ix,l=_ _(n-l)+ll. (5150_

i

Obviously, A is finite for[>v, i.e., for v =<_1<._.

flexural rigidity DA-- ((5.1 49_)are given in Table 25 for some
Values of the

values of _1 = MulM_. We see that in the range 0.60 ,; _ ,; !.7 the rigidity is

nearly constant (to within 5%).

For 0 < _,; v = the flexural rigidity A becomes infinite at points

whose abscissae are

x== -,t-a1//" V"n--!
11_ 1 ,
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Chapter VI

OTHER PROBLEMS OF PLATES WITH

STIFFENING RIBS

§ 1. BENDING OF PLATES SHAPED LIKE

ANNULAR SECTORS

Consider an arbitrarily loaded thin plate bounded by two arcs of con-

centric circles and two radii (Figure 83). The curved edges of the plate

are reinforced by thin elastic ribs of uniform cross section. The plate is

simply supported at all edges.

FIGURE 83.

=-X

We shall use a polar system of coordinates (r, 6 ) with origin at the

center of curvature of the arcs. The polar axis coincides with the axis of

symmetry 0x of the plate. The equation of the elastic surface of the plate

is then(cf. ]20], pp. 209, 321):

na (a + e)w== _#(r, e)+w_(r, e)=wO(r, e)+ A'r_'sin 2a +
n=,l

•-I- 2a + C.r 2. sin n_ (a -I- e) +2a
II=-I n--I

+ (6.1)
rim4

where w0(r, 8) are the basic deflections, considered as known, of the non-

reinforced plate under the same load; w'(r, 8) are the additional deflections
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dueto thestiffeningribs. Expressionsfor t_(r, 0) were given by Galerkin
] 20] for different kinds of load.

The unknown coefficients Am, B., C_, D. must be determined from the

following boundary conditions:

ate= ::}=a

where

0_
w=0, _ =0; (6.2)

atr=Rl, according to (2.364)

(6, + v) -0F + R_ _ ,-0}_- i - 0, _ = 0,

atr=R, according to (2.365)

(b'a -- v) 0w _ 02w , 0_v

(6.3)

(6.4)

A C A' C'
8, = R--R-_' 8'z-- R---_' 8;---_-ff, 8;--RD"

The function w°(r, 6) satisfies the conditions

w°=0. -_----0 at 0=±a, (6.5)

0'_ v 0_
_=0, -_r_--t-T.y=0 at r=Rand v=Rt. (6.6)

Substituting (6.1) in (6.2) to (6.4), and taking (6.5) and (6.6) into account,

we obtain the following boundary conditions for the additional deflections wL :

_1 0_ a_wI
_:0, (8_-t- v) T-I-R_--6t-_-_-= [_(0) at • = Rt, (6.7)

m':0,--(6; '0-_--+-0'_ 8'
a:wi

-- _--_-+ _-6D-_=h(e) at r=R. (6.8)

[°; I"
are satisfied automatically.

(6.9)

where

The conditions at 8 = -4-a
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()0w° and _ in trigonometric
We expand the known functions _ ,=R ,=_,

series for --a<6<-t- a:

co

n_!

¢D

an (a + e)

(6.10)

where Xn and ttn are found from Fourier's formulas:

I•.-a Of ]e-,,Ri

1 "_ &ve n_ ]
--.,G

(6.11)

Hence,

ra_ --s -- Pn'-_ sin 2a

(6.12)

Using (6.12) and (6.10), (6.9) can be rewritten thus:

t,o, _/n*n* . . _ _(a+8) ""

(6.13)

Substituting for w' from (6.1) in (6.7) and (6.8), and taking (6.13) into account,

we obtain the following four equations for determining the coefficients

An, B,,, C_, D,,:

A.Rj _ + B.,R,- "_ + C .R I_ ' + DnR- -_- ffi 0

A.R "_ + B,,R- -_ + C,,R'_ +'-t- O,,R- -_'+'= 0 (6.14)

n_--2all--v--61) + 2a
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The solution of system (6.14) is

I I c- "ff n'_n+2 - _ ntn_ 8 '_R! _i _ 2a

.4,.= --K---(k k I t,_x_Rt '5,+ jar ,1+

+,,#2(8;+-_-%)]-(k - _x
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where
R

A = a,b7- a_b6, k = R_

a1= aak 2a + a.zk 2a + a_k _

nn , n.._ nn

a_ --- aLk- '-iff+'z-t- a4k 2u -t- %k- -_-

n_ +2
b7=b'_ -_ +b_ _+b3

n_n+2
b_ _ b 4 k- ,, + bsk" + b_

ai = -- ..__(n_.1 -- v -- 6t) + 4"_T-6an_a_

a== \-_+1 (l+v+6,)---_- _-+1 8,

2na + n_ 2
as = 2(1 -b v-b 81) + --_- -_-_- 62,

a_= e 2a" 6_--2(1+v+_),

rl_ _ ( ?TJt

as=-- \-_g-- -_- \ I

b_=--2(I +v__8, O_ ___+_._.__82,2n_ n2a _ ,

(
b2= 21+ -_-_i(I + _--"',)

/./_ r/.3ga

b3= _-(l--_ + 8I) + -_-8;,

b_= 2n= n=_= _+2(1 +,_ --8' O,
a 2_ _

b_= \2_, 1 0+,,.--8;)+-_- _---_6

(6.16)

The problem has thus been solved. Substituting in (6.15) and (6.16)6,-->co

and 6_ co or 6 i--*co and 6'2_co , we obtain the coefficients A., B,,, C., D,,

for the case when the curved plate edges are rigidly clamped.

We shall show in conclusion that the bending moments L. vanish at the

end sections O= -4-a of the stiffening ribs.

In fact, according to (2.10) and (2.14),

(6.1_)

where O:R for the inner rib, and e=R_ for the outer rib.
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Since

O.= -- -_- ,

we obtain from (6.17) for @= :la

But according to (6.2),

A 1 0_ 1 Ow (6.18)

-_7-r=-_-=0 at O==ha (6.19)

for all values of r, including • = Q.

Substituting (6.19) in (6.18), we obtain

L.=O (6.20)

This proves our assertion.

Only the transverse reactions Vband twisting moments L, act at the end

sections of the stiffening ribs. We obtain from (2.10), (2.14), and(2.19):

! 0w( o_ 1 8
L, = C_,, = c \-EF ----# .) = c

atO= :ha,

I (1 O3w ! 0_ ) (6.21)

+ c . o-D_ + -_ . --o_- .

From the boundary condition w= 0 ((6.3)) it follows also that

aw o_w o_w
-_=-_-= 0--_=0 atr=Q. (6.22)

02W

&ao ' v, = (C -- A) QJ_-. a_ at O= zEa. (6.23)

Hence, (6.21) becomes

r,=ic__
Q

Bending of sectorial plates with reinforced
curved edges

Consider a sectorial plate whose central angle is 2a<n. The plate is

R
hinged at all edges (Figure 84). In this case R=0, i.e.,k= _[=0 , and
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(6.15)becomes

A_=--_c. = -210 + v + 8,) + 2p. + _821

B. =D.=o

where

and the coefficients r.,, are given by (6.11).

(6.24)

o

FIGURE 84,

X

Substituting (6.24) in (6.1), we find the total deflection of a seetorial
plate with reinforced curved edge:

(w=_(r, e)+ l----_, A.._sin_" (6.25)

If the plate is rigidly clamped along the curved edge, i. e., _, _-_ and_,_-¢_, then

A. = I I-¢.

Using the numerous solutions _ (r, 6) for hinged sectorial plates, given
by Galerkin ]20], we easily obtain the total deflections w(,, e) of a plate
with reinforced curved edge.

The additional bending moments in the plate are

M,-- --D_A_-'{{_ {I--v)([5 _ I)-- 1(I --v)p_ +

rs } nn (a+ e) (6.2 6}+ (3 + v)l_. + 2(1 + v)l--_-j sin. 2a
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._L (cont'd)

r_(} n_(.+ O)-- (l+3v)[_.-- 2(1 -4- v)] sin - 2a

§ 2. BENDING OF A SECTORIAL PLATE WITH

REINFORCED CURVED EDGE FREE OF

EXTERNAL LOAD

A sectorial plate whose central angle is 2a < _ is si1_ply supported along

the radial edges 0= _. The curved edge r==RLis reinforced by a thin

elastic rib of uniform cross section (cf. Figure 84). The load is arbitrary.

The equation of the middle surface of the plate can be represented in

the form

w=_+w "=w °(r, 0)+

Io ntl nn

A,,r '_" + _. )sm 2_

where _(r, O) are the basic deflections, considered as known 12ol, of the

nonreinforeed plate under the same load. The boundary conditions (6.2)

(simple support along the edges 0 = _ a ) are satisfied automatically.
The coefficients A,, and C, are determined from the boundary conditions

(2.359) for the reinforced curved edge:

at r = Rl

v Otv + 02w 61+8t +_ _tv 0"_

o_ R_ 0"w__(a_+v__3) • 0__ i_+._-- -_-

+ (SL + 8, + v__ 2)&_7_- + b, _[. -_-_ = 0

(6.28)

By hypothesis the function _(r, 0) satisfies the boundary conditions that

no bending moments or generalized shearing forces act at the edge r = R,

[cf. (1.16!l:

_(_ _ I  )ooa-We-+ •--_7-,+-7_

.F. _,--_-,+ .7.-_+-_--_7 +

0 l
+(t- _)-7" "_--_-" -_-2

0

(6.29)
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Substituting(6.27)in (6.28),andtaking(6.29)intoaccount,weobtain
thefollowingboundaryconditionsfor theadditionaldeflectionswt at •-- R=:

Owl 0_l + (81 + 82 -+v" ! a_u: 8 0"%!

= _1(6)=--8, _r R, " -_- --8= R_ 00" OrO0=)

Ow= cT'wI I O_ I -20"_wI
dr Rt_--(8_+v--3)_- 002 R,_+

+ (_, + 8= + v-- 2) _70_ R, " _ = -- f' (O) =

=--6= -_-ra-_+ Rl d__ ) + _= " "O0= arO0=

• (6.30)

Expanding the known functions entering in the right-hand sides of(6.30)in

sine series:

¢o

g _-6_- ).=., = .=, 2,_
2

OO

,_R, = X,, sin na (ct2a+ O)

(6.31)

we obtain

It(0)=-- 81(_. 4-1x)+62 IX.,+--_i-= X,, sin 2a

co

i'1_1

(6.32)

Inserting (6.27) and (6.32) into (6.30), we obtain the following two equations

for the coefficients A, and C,:

C.R, _"_ [(I -- v)p,, -t- 2(1 -t- v)-- 6 t ([_,,-- 2)+ 82[_]1(_,,+ 1)+

4- A.R=p" I(l -- v) -- 8, -F 8_,,1 (l_,,-- i)[_,,=--RdS_(k,,+

+ F.)+ 8=(_. + P_.)..)I,

C.R,¢"+_I(p. -- vp. -- 4) + a,l_,, (P. -- 2) -- _.1 (11.+ I) p. +

+ A.Rt _" [(1 -- v)+ p._, -- 8=1P,=,(P. -- t) =

= R, 1_,(;_. + _.)P,=,+ _= 0t. + _.,P_)I

(6.33)
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where_,= 2a "
Solvingsystem(6.33),weobtain

A -- 6.+1

+ 8_.'1 z_-- I_.[(I_. -- vI_. -- 4) + 8,1_. (I_.-- 2)- 8J_.l z,}

i)
c = i_.(. -_,.+i {p.(l--v-F 8,p --8_)z,-

Nj A.

(6.34)

where

2 2
a. = 213.(_. -- I) {(I -- _) C3 + v) + C8, + 8_)C_,, -- I - v) I-

+ b,8, (I_'.-- b}.

The problem has thus been solved.

As in the preceding section, it can be shown that no bending moments, but

only transverse support reactions and twisting moments act at the end

sections of the stiffening rib.

§ 3. BENDING OF AN ARBITRARILY LOADED

CIRCULAR PLATE WITH SUPPORTING RIB

An arbitrarily loaded circular plate of radius RL is reinforced along the

contour by a thin supporting rib. We determine the additional deflections,

due to the supporting ring, by representing the elastic surface in Clebsch's

form ([136], Chapter VII)

= ,_ + _' = _0+ _ ca.," + c°,"+5_o,.0 + _ ca/+ c:_"+')_i,,8. (6.35)

where m0 are the deflections of the simply-supported ribless plate under

the same load; (r, 8) are polar coordinates with origin at the plate center.

We determine the coefficients A., C., A_, C_ from the boundary conditions

(2.364):

Or + R_-_z---6° O-_D_ = O" (6.36)

By hypothesis the function w0 satisfies the boundary conditions (6.6) for

simple support along r= R_. We thus again obtain condition (6.7) for the

additional deflections w'.
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Writing
¢,_ ¢o

n=l n_O

(6.37)

we obtain

).=R, n2_. sin nO -- n2L. cos nO,
n_l n_O

(6.38)

where the coefficients X and _ are known, f{ubstituting (6.37), (6.38), and

(6.35) in (6.7), we obtain the following equations for determining the

coefficients A,,, C,, A_, C,:

,4. + c.R_ = o,

A.R'] n (n + v -- I + 61 "k- n26_) -[- CnR_+2 (n -F 2) (n + ! + v +

-}- i_a-k-n_62) = -- RI (61 "_"n_5,.,) _.,_.

(6.39)

Replacing _ by k:, we obtain a similar systen_ of equations for the
coefficients ,4', and C,.

Solving system (6.39), we obtain

R I (5, "F n'52)_.. (6.40)
A.R'_ = -- CnR'_÷_= 2 {2n -_- 1 -F v -I- 51 -t- n'5_) '

and similarly

A'.R? = - C'. R7 +_" - R, (5, + n"-5,) _._ (6.41)
2(2n+ 1_ v+6,+n25_) "

Substituting(6.40) and (6.41) in(6.35), we obtain the additional deflections

where

w_ = R, _] (_..cosr,o+ E, sinnS)v. I

,o,+..0,, [(.;
(6.42)

Adding (6.42) to any solution w0 for a simply supported plate under the

same load, we obtain the equation of the middle surface of a plate

reinforced by a supporting rib.

Circular plate subjected to a concentrated load

Consider as example the problem of bending of a circular plate with

supporting rib of radius R1, subjected toa concentrated force applied at an
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arbitrary point R,0 (Figure 85). The corresponding deflections of a simply

supported plate without supporting rib are /203/

w ° = Fo -I- _ Fn cos ng, (6.43)

where

for R < r <: Rx

P [ (3+ vjR_-- O -- ,,)R,Fo = _--_- 2(1 -t- v)R_ X

X (R_--,')+ (R' + ,')In-_,]

PR [l+v /_-- R_Ir •

+ 2R;(, _-3¥ :_iR,'+ ") + (' -,,)R,_ ,.____ ]

F.= yR. { : [8nDn(n-- l) (2n-k l+v)R_" (1-}- v)(n--l)R s-

(n-- l)n
--(3+v)nR_+(lq-v)(n--l)rl-I -n-+-I ×

(6.44)

for O_r_R

P [ (3+ v)R_-- (I -- v): (R__R_)+r. = _ • 2 (1+ v) R_

+(R' + :) ln-_-z ]

•°R [l+v R=--R _, __,F_ = 8---riD "3-Fv R_ r-- 2r In +

at 2/_lR=(l + v) q- R4(I --v)--R_(3 + v) r']2 (3 + v) R_R 2

[ [0 +,,×,,_-
=SnOn(n--l)[R_ L l+2n+v F

-'[-_:_ -.]-(n_ Ri k (2n--[--i--[--v)(n-t-l)/_

n+l

(6.45)
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0) and find that accordingDifferentiating (6.43) by r• we obtain y ,=R,

to(6.37)

_. _[dF._ (n> 0), (6.46)
X;,= o. . - t--_).=_,

i. e. •

P R' -- _ PR" (/_ -- R_t)

_°= 4--_D'_' _,----- ,)/_a+ ,. (n:_ l). (6.47)2nD (2n 3r 1 "4-

Substituting (6.46) and (6.47) in (6.42), we obtain the additional deflections

wL and then the total deflections uJ ((6.35)):

w = No + _ N. cosn0.

Here

N'*=F"+l(ln+l+v+8_+n28t) _ --t'-_t] j cosns. (6.48)

(n > 0).

In the particular case 6_ = 82 = co, we obtain from (6.48) the solution for

a plate rigidly clamped at the edge (/136/, p. 256).

As example*• the deflections wp due to a force P were determined as

functions of 81 and 8t for __L = 2. The results of the calculations showed

that in the case considered the flexural rigidity (5_) is most important, while

the torsional rigidity (8_) has a negligible effect on the deflections wp. The

* The calculations were performed by S.I. Sidorenko.
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81

results are given in Figure 86 which shows wp as a function of 6 = 8-_-+-2for
61 = 1 and 6_
_7 _ =o_.

§ 4. AXISYMMETRICAL BENDING OF AN ANNULAR PLATE

OF VARIABLE THICKNESS WITH REINFORCED EDGES

Consider the axisymmetrical bending of a thin isotropic annular plate

of variable thickness, whose edges are reinforced by thin elastic ribs of
uniform cross section, made from a different material. The radii of the

axial lines of the stiffening ribs are Rl andR. It is assumed that one of the

principal axes of inertia of each rib cross section lies in the middle plane

of the plate.

The basic equation of bending of a plate of variable thickness, subjected
to a transverse load, is ]55]

o±('° o,dr "-_" "{- -F "3"F- _ -_" -t- v "F } = -- Q" (6.49)

d_
where _"=----_-; w are the deflections of points of the middle plane;

D=oI, isthevariableflexura,rigidityoftheplate; +C is
the shearing force per unit length of the circular section of radius r; v is

Poisson's ratio; q=q(r) is the transverse load per unit area. Details on

studies of the bending of thin plates of variable thickness are given in

(]561, ] 57/).

The general solution of (6.49) can be represented in the form

_) '= _'o + ¢}I. (6.50)

where

dwO d_ a
o0= - --_--; o,-----W-; (6.50a)

¢_0 are the basic deflections considered as known of the nonreinforced plate

under the same load q; w' are the additional deflections due to the stiffening

ribs. Expressions for the functions _v° or _)0for different loads acting on
circular and annular plates of variable thickness can be found in [55/.

The function 0, must satisfy the homogeneous equation corresponding

to (6.49), and can be written in the form

0, = C,_}¢'_+ C,e,2_, (6.51)

where _') and _)(_ are independent particular solutions of (6.49) for Q,=O.

In ([ 55], §§ 10 to 15) these are given as hypergeometric functions when

the rigidity of a plate of nonuniform thickness varies in a very general manner;

_}O_and _}(2)are integration constants which have to be determined from the

boundary conditions (2.366) and (2.367).
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Hence,at theouter edge •_R,,

dO R,
(8, + _) 0 1- R, "-37 = "'o -D-'

and at the inner edge r = R,

dO , R
(6_-- v) o -- R_- = -- too-E,

where

e

A, A,

6,=_. 8;= o ',= R( ),=R

A!, AI are the flexural rigidities of the outer and inner ribs;

the given applied bending n_,omen,s.

By hypothesis,

(6.52)

(6.53)

(6.54)

mo and m; are

the function 00 satisfies the following relationships:

dOo R,
re0 + RI -d-T = m0 --D- at • = R,, (6.55)

R dOo , R
vO°at" dr = m°'-D at •=R. (6.56)

Substituting (6.50) in (6.52) and (6.53), and taking(6.55), (6.56), into

account, we obtain the boundary conditions for the derivative Oiof the
additional deflection m':

dO1
(6_-Fv) ol-FRl_=--sloo at •-=RI,

<_ (6'i--'v)O, R d_'h --6',0 o at r=R.

(6.57)

Substitution of (6.51) in (6.57) yields a system of algebraic equations in

the unknown coefficients C, and C2, whose solution is

(6.5e)

c,=_-{_,00_.[(0,+.+_,_)_,,]_:

_.--_-{-0,,o0,__[(0,+-_,÷)_,,L.+
+0,,.._..[(_,-.-.%)o,,,]_j

(6.59)

where

_:[(o,+,+_,+,)°,,,].._.[(o,-,-_-'_o,-_,_,,,..,-
-[(o,+.+.,_o,q.,,..,[(°:-'-"m_°"'_.,,__..
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Insertingknownexpressionsfor thefunctions_}_i_ 0(_). 00, we can thus

determine the influence of the stiffening ribs on the stresses and deflections

of a plate of variable thickness.

The additional deflections are

---- _ OLdr + Ca. (6.60)

where C, is a constant determined from the condition that wl- -- 0 on the

support contour.

We shall consider some elementary examples.

Annular plate with reinforced edges supported

along the outer contour

Let the rigidity of the plate be

o= D_. (6.61)

where Do and m are constants.

The particular solutions ¢(', and _(') of the homogeneous equation

corresponding to (6.49) are in this case

O(')=r v, O(2)=r _, (6.62)

where

°V-a-- T, p---a+ T. a= ._+ (6.63)

Substituting (6.62) in (6.58) and (6.59), we obtain the coefficients Cl and

C, for an arbitrary axisyrnmetrical load acting on a plate whose rigidity is

given by (6.61):

c, = _[(oo)__,8; - (e#_R.a,8,j }!
C, = _ [(eo),.e,b,a_-- (#o)_eb26;]

(6.64)

where

(6.65)
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Consider as example the case when no outer rib is provided0, =0). The

plate is subjected to bending moments Af,= const, along the circle r=R,,

and to a total transverse load Palong tile circle r = R (Figure 87).

)
•f. l_zR__J
t 2., i

The derivative 00 of the basic deflection _:_ of the nonreinforced plate

is in this case

P (6.66)
Oo = Cir v 4-C'zr -_ + 2nDor.,_lm(l -- v) '

where

c; = _l-"
2n Dora (l--v) A, {P (m -- I -- v) 0 -- v] !11B-' +

4" [P(m -- I -- v) 4-"2_m (I-- v)M_] (v -- [3)tl_}

c'2= _l+'
27¢Dom( l -- v)A. {P (m -- I -- v) (y 4- v).qlS-i_

-- [P (m -- I -- v) + 2_,. (I-- v)Md (V + v)}

R,
A, = (y J¢-v)@- v)(vl'°- l), Ti= --_-.

(6.67)

(6.68)

Substituting (6.66) in (6.64), we obtain the coefficients C, and C= of the

function O, ((6.51)), and thence, according to (6.50), /127/,

0 == C_" 4- C_ r-It 4- P (6.69)
2nDom (I-- v) rm-i"

where

Co= /_l'-" {P(m-- l -- v + a)(p-- v),¢'--'+
2aDorn ( I -- v)A o

-FlP(m- I --v) 4- 2=n, (t --v)Md (v -- 6-- _) TI_=}

._l+v
C_ = 2nDom(l -- v) Ao [P (m -- l -- v -}- 8) (y 4- v) 111s-1--

-- [P (m -- l --_) + 2am (l -- v) Md (V + v -- 8)1

ao= (v+ v)(p-- v)(,l'° - l) + _,I(v + ,,)n="+ (P-- ,,)l,

6 = 8;

(6.70)
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When P = 0 and the plate is subjected only to bending moments M, applied

at its outer edge, (6.69) becomes

MI

(6.7z)

The bending moments are

M,=D +v r , Mo=D + dr )" (6.72)

The stresses on the upper surface of the plate are:

6M, 6M,
a---------_-, ao---- h= , (6.73)

where h is the variable plate thickness.

obtain

6Ma ! / r ___..__

_, '+_+_. 1
--(P--')C'--8 +') (-7-) °]

6M1 f m= r __=_____
o,=_[(l ] ,y)_+8--v}_ (-_'-1) a --

_) ._ ,+v+-_-( ) ]

Substituting (6.72) and (6.71), we

(6.74)

where H is the thickness of the plate at its outer edge.

It is easily shown by direct substitution that the stress distribution is

uniform over the entire plate surface if we assume

re=o, 8=1+_. (6.75)

In fact, if a plate of uniform thickness is reinforced by a rib whose

relative rigidity is 8 = l -!-v, no stress concentrations will arise in it, and

{6.74) becomes

6
a, = ae :--_ M,.

When the thickness of the plate varies linearly, we have m----3, and for

I (6.74) becomes

H= 8(TI=-- 1) + 3(rl=+ 8)8 '

6Ml 3 (8 -t- 3_)
o', -= H= 8 (.qs_ 1) + 38 ('q=-F 8)'

(6.76)
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The following conditions are fulfilled in this case:

aa, aa, _,,

_->0. -_-<0. -_- =0

o,>0 for 6=0

or0>0 for 6-_oo

0% l

-_<0 for 6>-_

1

",----"0 for •=Rand6=l-_

(6.77)

Hence, the optimum value of 6, for which the calculated stresses in the

plate are minimum, is

I (6.78)8°Pt= 1 "_.

We obtain from (6.76) for 6 =6 °pt

omopt = 3q'
,,x ,qs + 2

6M,

HS *

TABLE 26

6
1.25

O 6.148-
I

I_" 1.482

c<* 1.766

1.5

4,2_

I,_

2.670

2 3 5

3.429 3.115 3.024

2.400 2.793 2.953

4.500 6.943 8.459

0 16M'Table 26 gives values of m,]-_i-" for some values 'l = and 8 = 0

! (optimum rib), and 6=¢o(perfectly rigid rib).(perfectly flexible rib), 6 = ! -_-

I the strength of the plate
We also conclude from (6.77) that when b> I-_,

l by the stresses
is determined by the stresses %atr=R, and when6<l-_,

a, along the same circle.

Annular plate rigidly clamped at the outer edge

and reinforced by a rib at the inner edge

Let the rigidity of the plate be given by (6.61).

we obtain for an axisymmetrical load:

Setting 6, =oo in (6.64),
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where

c, = _ [R:(oo)..,6 - (8 -,, + I_)R_(Oo).=,,,J I,

c. = _ [(6- ._- ¥)RV(Oo).=R,-- RT(o,,).=.81 I

A, = (8-- v+ I_)R_R-B -- (8-- v-- _)R_R '_[and 8 = _'i]-

(6.79)

2R
2RI

FIGURE _8.

In the particular case of a transverse load P applied to the inner edge

of the plate (Figure 88), we have, similarly to(6.66),

P

Oo = C_ rv-I-C_ r-j 4 z u t"n_or"-""--v)m' (6.79a)

where

C_ = PR"-e I_12a(2v-- 2a --m) + 2Yl$-'(m --I -- v)l
4nDom (!- v) [(y + v) -I- (_ -- v),12QJ '

C; = PRm'+vl(m -- 2v -- 2'0 -- 2'1p-' (m -- 1 -- v)l
4aDo,n (1 -- v)lh' "Fv) + (p-- v),12"l

Substituting (6.79) in (6.51) and then 0, and (6,79a) in (6.50), we obtain

for the case considered, the function 0 in the form (6.69),

Co = PRI'-P [U'* (2v -- 26 -- 2a -- m) + 2rla'-'(m -- I--
AI

Co = PRI+" 1(2t*-- 2v -- 2a + m) -- 2,1_"(m -- ! -- v + 8)1 J]
a,

(6.80)

where

Aa = 4nDom (I-- v)[(y+ v)+ (_-- v)v)_a+ (,i2a-- I)61. (6.81)

Setting6=_, we obtain from (6.80) for a plate rigidly clamped also at

its inner edge:

C°=2"D_(I--_')" ,t_"- i _o --he-'' =2nDom(I--v) ___ i"
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Assumingtheplatethicknessh to vary linearly(m=3), and setting

l
v = -_, we obtain

3 3Ecs
a-----_, _------3, ¥=0, h=cr, Do= 32 '

where c is a constant.

The solution (6.69) becomes in this case

8P
'_ = Co + C;r_-{ - _, (6.82)

where

8P 1(54- 3b),1'-- (8 -t- 35),1=1
Co = 3aEc=R_[ 1 W 8q' -I- 3('q'_- I)81 '

Co -- 8P [(I -- 35) -t- (5 -4- 3_) ,ltl R,
-- 3nEcS[l + 8-qs+ 3(q s- !)81"

Integrating (6.82) with respect to ,,we obtain

! .r__ _+C=.w==--C_r +-_Co +

where C= is a constant, determined from the condition that w= 0 at •--- R,:

=^_ I^. 8P
Ca c,olfs -- y C,'oR7 = 3hEaRt"

Formulas for the deflections and stresses of plates of variable thickness

with reinforced edges* can be derived similarly for other loads.

§ 5. FREE OSCILLATIONS OF CIRCULAR AND

ANNULAR PLATES WITH CONCENTRIC

STIFFENING RIBS

We consider in this section the free oscillations of circular

and annular plates reinforced by elastic ribs (] 164, 168]).

The differential equation of the free oscillations of a thin plate is

(]140], p. 214)

0_ (6.83)
csAAw + _ = 0,

* An approximate method is given in /18/ for the strength analysis of a circular plate of variable thickness,
connected to a concentric annular elastic element and loaded axisymmetrlcally by applying bending
moments and forces in its middle plane.
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where c4= Eh*-/12(l--v_')ix;A denotes the Laplacian operator; E is the modulus

of elasticity; v is Poisson's ratio, h is the thickness, ixthe density, and
tv the deflections of the plate; t denotes time.

In polar coordinates (r,e)(6.83) becomes

w (r, O.0 = _ (r, O)cos (pt + %), (6.84)

where p is the circular frequency and % = const. We then obtain:

1) for a circular plate (domain S, )

W I (r, O)= [A_nJn (kLr)-t- Clnln (ktr)l cos nO; (6.85)

2) for an annular plate (domain So)

I_'o(r, O) = IAoJ. (k,r) + B,_N n (k,r) + Coal. (kor) + Dock n(kor)] cos nO- (6.86)

Here l.(k,r), K.(k¢) and J_(ktr), N.(kor)(i = 0, 1) are Bessel functions whose

arguments are, respectively, imaginary and real, k_ = p'/c_ = p'ht_/D_; ixl is
the density, h_, the thickness, and D., the rigidity of the plate in domain

S_(i = 0, l); A,., C,., B_, and Don are constants.

We shall consider some problems concerning oscillations of circular

and annular plates.

Axisymmetrical oscillations of a hinged circular

plate with supporting rib of finite mass

The deflections of the plate are given by (6.84), where W(r, O) is defined
by (6.85), withn=0:

Wl(r) = AmJo (ktr)q- Cm/o (ktr). (6.87)

The function tV(r,0) must satisfy the following boundary conditions on the

support contour r = R :

(8,-- atx_+ v) d d'-_7-IV,+ R -37rWt = 0, W,=0. (6.88)

The first condition is obtained from (2.372) for Xh ----0.

Substituting (6.87) in (6.88), and equating to zero the determinant of the

system of equations obtained, we find the characteristic equation of the
problem:

2x/o(x,)to(X,)+ (_--a,@)fJ,(x,)t0(x,)+ t,,x,)J0(x,)l= o. (6.89)

where

=8,+v--l, 8,=R-_,, x,=k,R.
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TABLE 27

(1!

0.2
0.04
O.0OO8

_ 8,

1 13I' 15I'°1 L
._71,.75ol,.9,,I_-ZZ]_.,4_1_._ I_.._4---_12._7-_3._oo1.960 2. I O_[2.227 2.399[2. 523[2.617 ] 2.69012.895 [ 3.037 3.200

;. 2002.457 2%2 6"/2'0,_128'51"_'L30S92.215 2.355J

Table 27 gives the first roots x_ of (6.89) for various relative flexural

rigidities 81 of the rib and for three values of ctl ((2.374)).
The data of Table 27 were found by the method of sections. The absolute

error in no case exceeds 0.001. The frequency of the free oscillations of

the plate is

f=-_-=_ V 12pl(l--v')" (6.90_

Consider as example a steel plate whose dimensions are R = 140ram,

h_-- 6mm, E_ = 2.106dynes/cm 2, v = 0.3, F, = 7.86g/cm 3.

¢

70(

60(

¢,

2

L

I
R2.I40mm

I_

h=Smm I

1
4 6 8

FIGURE 89.

Figure 89 shows the frequency t ((6.90)) as funetionof 6_ and a, (i. e. , of

the rigidity and mass of the rib).

It is seen from the curves that / decreases with increasing mass and

decreasing rigidity of the rib. When 8x --, co, f tends to the value correspond-

ing to a rigidly clamped plate. The values 8x = 0 and at= 0 correspond to

a nonreinforced plate hinged at the edge.

Experimental frequency determination for a
reinforced circular plate

The above theoretical solution was tested experimentally on a circular

steel plate (St. 3) having a stiffening rib of rectangular cross section (h-b).
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Thedimensionsofplateandrib were: R-- 140mm, hi= 6ram, h= 18ram,

b -- 5ram. A heavy pipe with cone-shaped upper part was used as support.

The support radius was equal to the mean radius of the stiffening rib. Four

resistance strain gages were symmetrically glued to the plate. The bridge

thus formed was connected via an amplifier to a B-5 loop oscillograph

whose natural frequency was 2500 cycles] sec.

The plate was caused to vibrate through the sudden removal, by means

of a special device, of a centrally applied load. The oscillographs had also

time markings at a standard frequency of 500 cycles] sec. The frequency

f was found to vary between 461 and 470 cycles] sec, its mean value being

465 cycles] sec (calculated from six measurements). One such recording
is shown in Figure 90.

FIGURE 90.

The frequency calculated by (6.90) for the given plate with rib was 454

cycles]sec. The difference between the theoretical and experimental

results is thus only 2.4%.

Free oscillations of an annular plate with edges

reinforced by ribs of finite mass

An annular plate with reinforced edges r = R and r = R,> R is simply

supported along the inner contour. The stiffening ribs have, respectively,

rigidities .4, C and A'. C', densities b* and p', moments of inertia It and /;,
and cross-sectional areas F and F'.

The function W0(r,e) given by (6.86) must, in this case, satisfy the

following boundary conditions:

261



On the circle •= R, we have, according to (2.376), (2.372), and (2.375)

for Dk=0and hh=O:

- 8;_ w0+(8;- _,,,_--0)o _ 0/-_-_-Wo -- R _Pi- Wo = (6.91)

W0 = 0

Replacing the subscript k of W, tL. h by 0, we obtain according to (2.372)

and (2.373) on the circle •=Rlfor _k----O:

_8; a_____w0+ @;+ 81 ! o,+ "o)-_('-_- Wo+ (8;-- al2_ + "o)×

× _- Wo+RL Wo = 0,

8;-_- W o+ (2-- Vo-- 8', -- 8;) R, 0' Wo + (Vo__3 + 8;) x--

×_-W0+ i t}riil]o -I- i_i" o--Ri'_-Wo÷alix_Wo=O'

(6.92)

where

A C A' C'
51= RDo' 6;=-_o' 6;--'R-_o' 8;= _Do'

a,, = I_J,R/pohoR1. a,, = p.'J'dlXohoR_u (6.93)

li'F ' k4 12pll_o (I -- ,I)

ho is the thickness, Eo the modulus of elasticity, _to the density, and Do the

rigidity of the plate. The boundary conditions (6.91) and (6.92) yield the

following characteristic equation for the frequencies:

/n(/lil "-i) Nn(xlil -I) la(Xiil -i) K,.l(xlll -i)

all a. a,. all ( 6.94)
all all aIi na = O,

Gtl 1211 Gas GU

where

x_[x_\ x_[ ) (x 2b'-<''''; "'+''-C)
ffi xl / x2 \ x_oo

,,:, x.a. ffi--qc "tT/ Tt'-a" xl

X22 _ xi

ai,l = --"-_- K,, (-_- ) -_--(bl--all x_ ) Kn+, (-_ )

_rll : (a 2 -- X2i -- II(lll/:_) 'In (X2) -- Is (bl -- GIIX4) Jn+l (Xi)

a:ii = (a I -- xI -- riclilx24)Nn (xi) -- x I (bl -- ait_) Nn+i (xi)

aii ,= (% + x] -- nailx I) I, (xl) + x I (bI -- CliiX_) Ill.l_i (Xi)

(6.95)
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a_ --(c 2+ nx_-- %xDj (x9 + x2(d2_ x_)l.+, (x2)

a,, =- (c2+ nx]-- a_) A' (x,) + x2(d,-- x_)N_., (x9

ao = (c,-- nx_-- %_) t,, (x_)-- x, (e_+ x_ _+, (_p

a,_-- (c_-- nx_-- %x_) K,,(x_)+ _, (d_+ x_)K,,+,(xp (6.9 5a)
% = n_0_-- n'(8_ + 8_ + v) + n(81 + v)+ n(n-- 1)

bs= n'8_ + _ + I -- v

b2-- n'8;+8;--1 +v

¢_ = n46; -- nS(6_ -F 6_ -t- v) -{- n'(6_ -b v) -b n'(n -- 1)

d, = n'(8; + 8;-- l + _)
RL

_=-_-

Using (6.89) or (6.94), we can also solve the inverse problem, i.e.,

determine the rigidities of the stiffening ribs, required for a given frequency

of free osci!!ations of the plate. Clearly, this problem has no unique

solution. The specified value of [ must lie within the range of frequencies

for nonreinforced hinged and rigidly clamped plates.

Free oscillations of circular and annular plates

with stiffening ribs of zero mass

It is assumed that the mass of the ribs is so small that it can be

neglected.

We consider a circular plate of radius R_, reinforced by an elastic rib

along the circle r :- R, and by another concentric rib of radius R < R,.

These ribs have uniform cross sections, one of whose principal axes of

inertia lies in the middle plane of the plate.

The axial line of the inner rib divides the domain of the plate into two

parts S, (r _ R) andS0(R_r<Rti. The corresponding flexural rigidities are
u,= E,h_/m(l --v_) (/= o.l).

The deflections of the plate in domains $1 are represented in the form
(6.84):

wdr, O, t)= W_(r, O)cos(pt +_Po), (6.96)

where the functions W_(I= 0,1) are defined by (6.85) and (6.86).

If the mass of the ribs is neglected as being small compared with the

mass of the plate, we can determine the unknown coefficients Az_, B2_, C_,

D_(i = 0,I) by using the boundary conditions (2.357) at the joint between plate

and inner rib, where k-=-- I,A_=A, C_=C, )_ =_., and(2.359), where rn0(O)=:=

=po(O)=O. _=o, _,=_;= A'
R-T_o' 6_=6;' or(2.364), withw=w o, 8,=8;, m0(0)=0 ,

depending upon whether the outer reinforced edge r= Rx of the plate is free

or hinged. These cases will be considered separately.

Characteristic equation for a free plate (Figure 91,a).
Substituting (6.96) in (2.357) and (2.359), and equating to zero the
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determinant of the system of equations in the unknown coefficients,
obtain the following characteristic equation:

s,,(x,) s**(x,) Xs,8(xo)

s,,(x,) s,,(x,) _,,(Xo)

-- J.(x,) --/.(x,) J.(xo)

l.+_(x_) l.+_(xO l.+_(Xo)

Xs**(Xo_ _s,_(xo) _.s_(Xo)

_,s,,(Xo) Xs,s (Xo) Xsu (Xo)

N. (Xo) I. (Xo) g. (Xo)

N,,+l(Xo) I.+,(xo) K.+l(Xo)
__'-L-ZT--

xi-I x_-' x;-' X_ol x;-' Xo i

0 0 s. (Xo_) s. (Xo*l) s. (Xo'q) s. (Xo_l)

0 0 sss(Xoll) s. (XoTI) s. (Xo'q) s. (XoTI)

=0,

where

s. (x,)

sl_(xO

s,Axo)

s,,(Xo)

s,s(xo)

sl.(xo)

s2,(x,)

s..(xO

_(xo)

s2, (Xo)

s= (Xo)

= - (x_+ a)J. (xI)- bx,.l.+, (x0

= (x_--a)l,,(xl) + bxll,,+t(xl)

= [x_o--n(n -- I)1J,,(xo) --XoJ,,+,(x o)

= [x_-- n (n -- l)l _V,,(Xo)-- xo,V,,+_(xo)

==-- [Xo2+ n (n -- l)l 1. (xo) + xol,,+l(Xo)

•,= --[Xto+ n(n -- !)1K,, (xo) --xoK,,+,(x o}

= c+nx_)J,,(x,)+(xld--x_J,,+l(x 0

= (c -- nxD !. (x,) -- xI (d + xD !.+ I (x,)

= I(n--l)'--X_olnJ,.(Xo)+[.,:2o --(n* + l)lxol,,+, (xo)

= I(n--l)'--x2olnN.(xo)+lx_--(n_+l)lxoN,,+,(xo)

|(n--lp+ xgl nl . (Xo)+ (X2o+ n2+ 1)xol,.+l (%)

_(Xo) _ [(n--l)S+x_olnK.(xo)--(x_ +n' + l)xoK,,+,(x o)

s.. (Xo_l)= -- (X2on*+ a') g. (Xo_)-- b'xo_! .+_ (xo_)

(Xo_)= --(_I1' + a') N,,(Xo_)-- b'xo_N.+_ (Xo_i)

s_(Xo,_)= (x_'q*-- a') I. (Xon)+ b'xo_l.+ , (Xo'q)

s_ (Xo_l)----- (x_* -- a') K,. (Xo_l)-- b'xo_Kn+, (Xoq)

s_(Xo_ ) = (c' + nx_o_')_.(xon) + (d'--x_on_)S.+,(Xo_)Xo_

s.s(Xo_) = (c"+ nX_o_') _V. (xo._)+ (d"-- x_,_')Xon_ .+, (Xo_)

s_ (Xoq)= (c"--nx_o_')l . (xo_)--( d' + X_o_bXo'V.+_(xon)

s_(xo_)= (c' --nX_o_')K. (xon)+ (d"+ X_o_')xo_K.+, (Xon)

a = n_(t,x+_, +v_ --1 -- _.Vo)--nO, +v_ --_.Vo+_* -- 1)

b .= _ + v, --XVo + _.n* -- I

c = n_Sa+ nt (6. + _-- i -- _.Vo+ 3X)-- ns(6, + _ + vx--

--l--X_o+ 2;L)-- _.n

d = n*(O_+ _. + vx-- 1 -- _.Vo+ 2_) + _.

a'=n'(.O; + _; + %--l)--n(_; + Vo+ _;n'-- 1)

we

(6.97)

(6.98)
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b' = bI+ Vo+ t;n, - l

c' = n'81+ .'-(t; + _o- b-n'(6; + t_ + ,,o- 1)

d°= n'(t; + 6_+ vo-- b

I_ t Do

xl -- klR, Xo---koR, _ = -R" L = -_l '

A C A'

6, = -R-_I' 62 -- RD, ' 61 = _lDo'

A, C and A', C' are, respectively,

the inner and outer ribs.

(6.98)

cont'd

8;----- C' (6.99)
R,Do '

the flexural and torsional rigidities of

2R,

b P'///////////////////_/////////////////_

c _///////////////////_

d _/////////////////_-'_

FIGURE 91.

The oscillation frequency is

x_,]I ,/r--_ t xg_]',//--_0
(6.100)

We shall consider some particular cases.

a) Setting61 = 62 = 0, ). =l, kz = k0, andn =0, we obtain from (6.97) the

characteristic equation for axisymmetrical oscillations of a homogeneous

circular plate of uniform thickness, reinforced by a concentric stiffening

rib along the circle r = R (Figure 91,b):

_I, (x,)I, (x,)+ INo(x,n)+BK,(x,nV,(x,_)l_(x,)+

q" _ [K'o(xp])-- BN, (x,_)I,(x,_)]J_ (x,)q-

+

(6.101)
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where

B = 2(1-- v,)/x,rl, No (x_) = Ko(x,n)J,.(x,n)-- Jo(x,._)K,,(x,n),
Mo(xm)= do(x,,n)tl Cx_'q)+ d,.Cx,n)Io(x_n), (6.102 !

Ko (xx_l) = No (xx'q) It C_qvl)-t- N_ (x{q) To(x,_l) •

Setting 11:1 in (6.101), we have the case of a stiffening rib located at
the plate edge (Figure 91,c):

Mo(X,)+ 2(_, + v_-- 1)xF'./, (xOl_(x,) - O. (6.103)

b) For _,=co, we obtain the characteristic equation for a free annular

plate whose edges are reinforced by thin elastic ribs (Figure 91,d):

where

Is;,txo) s;_(Xo) s;gxo) s;,(xo) [

s:, s:, I:
s6_(xoTI) s_ (Xo'q) s_5(Xo_q)Sso(Xo_l)[
so3(Xotl) s6, (Xo_) sG_(Xo,|) s6o(Xo_)[

O,

s;, (Xo)= (xg- a')s. (xo)-- b'xJ. ,_(Xo),

$_2(X0) : (X_--Q*) Nn(Xo)--b*xoIVn+I(Xo),

s_3(xo) = --(xg + a') l . (xo) -t- b'xJ.+L (xo),

s;,(xo)= -- (4 + a') K. (xo)-- b'XoK.+,(x_).

s;, Cxo) = Cc'--nxg)J.(xo)+(d" +*Dxd.+,(xo),

.%(xo)= (c"-- ng) N (Xo)+(d"+ xg)XoN.+, (xo),

._ (xo)= (c" + _'4) t (xo)--{d"- xg)xg.+, (Xo),

s_,(xo)= (c"+ ng} K. (xo)+ (_" -- g) XoK.+,(Xo),

a" = n'(8; + _; - _o+ l)- n (C --_o+ 8;,_, + _),

b" = 6_ --v o -t- n"-6_-1- 1 ,

c'=n'8_ + n-*{8_ -[ 1 --'o)- n3(5; q-8; + l --vo),

d"= n'(8_'+ _; + ] --Vo),

A C
8; = -R-_o , 8; = RD o .

(6.104)

(6.105_

Characteristic equation for a supported plate.

characteristic equation for a plate supported along the circle r= R,

(Figure 92) is obtained by using (2.384) instead of (2.359). This is

equivalent to replacing the last two rows of (6.97) by the following:

i 0 J,,(Xo_) N,,(XoTl) l,,(Xo_l) K,,(xo_l) I0 -- 1,,+= (xorl) -- N.+l (xo'q) st s= Io
I

The
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where

Weshallconsidersomeparticularcases.
a) For 81=8_=0. ).=1. v,=v_=v, k,=k0, andn=0we obtain the

characteristic equation corresponding to axisymmetrical oscillations of a

homogeneous circular plate of uniform thickness with one concentric

stiffening at r =R(Figure 92,b):

2

Xs'q

+

-- -- ,/, Cxx)1_ (x,) + IN_ Cx,ll) -- 4B-'Jo (x,q) Ko (x,'q)l 1_(x,) +

71[ •

q- _-[Ko (x,,i) -- 4B-INo (Xgl) lo (Xpl)]J_(x_) -I-

-- 4B-fro (x Pl) Jo (xpl)I = O.

(6.106)

a[_///////////////_ _ _/" _'_/¢ !,t_. )
2R..

_ 2R 1

c__///////////////////_

e _/'.//7_////'//'//_ 4

FIGURE 92.

b) Setting 8 I= 8_ = 0 and _1= 1, we obtain the characteristic equation

for a homogeneous circular plate reinforced by a rib at the edge r = R_
(Figure 92,c)

2xJ, (x,) J,_(.xl) qt. (81 -I- n .6, -- 1 + v) × .M_(x,) = 0, (6.107)
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where "

M_,(x_) = ./,, (x31.+_ (x3 + £,+. (x3/,. (x_).

c) ForX=oo,6 I=6_ =0, we obtain the characteristic equation for a

hinged circular plate with central hole whose edge is reinforced by a thin

rib (Figure 92,d). This equation can also be obtained by replacing the

last two rows in (6.104) by

J. (XoTI) N.,(Xo_l) I. (xo'q) K.(xoTI) [

--J.+t (xo_l) -- N,,+, (xor0 s' s" ['

where

2Xo"q

s'=/.,¢1 (xo'q) i -- v0 (x°ll)' s'= -- K.+I (xo'q)-- _K. (Xotl).

d) The characteristic equation for a plate rigidly clamped along the edge

r=R_(5 I=_6_= oo) and having a thin rib of radius R<RI (cf. Figure 92,e) is

obtained from 6.97) by replacing the last two rows by

0 0 d. (Xoq) N. (Xoq) /n (xo'q) K. (xdl) .0 0 --d. f l (xoq) -- N.+I (xoq) /. _t (x,,q) -- K., t-, (Xo_l)

3) In tile case of axisymmetrical (n-_0) oscillations of a homogeneous

circular plate 0_= 1, k,--/_,,) clamped at the edge (61 := 6_ _ co) and having a

stiffening rib at r_R (Figure 92,0, we obtain the following characteristic

equation:

2 2 • _ 2 *

-- X-_ dx (Xi) It (Xl) + It (Xl) No (Xllq) + "_ dl (Xx) Ko (Xxll) -[-

+M'o(Xpl){_+K,(x,)ll(xi)--2J,(xJN,(xJ}=O. (6.108)

Influence of a concentric rib on the oscillation

frequency of a built-in circular plate

As example we shall study the influence of a stiffening rib on the

frequency of axisymmetrical oscillations of a circular plate clamped at

the edge (Figure 92,f). Table 28 gives the roots x?lof (6.108) for different

relative rigidities 6_ of the stiffening rib and for different positions of the

latter (_ = _--!_).

R (from which the oscillation
Curves of x_q * as function of B* -_-

freauency of the plate can be found by (6.100)) are given in Figure 93 for

A which determines the flexural rigidity of the rib.
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TABLE 28

11

o
I
2
3
5

1o
loo

0o

3.1961 3.196

3.19613.274
3,1961 3,345
3. 196 [ 3.385
3,196 3.471
3.196 3.595

.196 3.938

.196 3,954

I
3.1963 IQ5,3 96
3.339131365 .31358
3.45213,487 I3.466
3.540[ 3.588 I 3.555
3. 647 3. 724 3. 676
3. 897 3.92 3. 862
4,405 4,319 4.098

4.497 4. 396 4.1381

3.196 3.196

3. 30013,2_6
3.354 ] 3.294
3.390 ] 3.314
3,429 3.338
3.495 3,3645

3.402

3,B82 3,409
3,600

3.196I 3.195 3.196

3.2331 3.20713.196
3,261r3,213 3.196
3,274[ 3.216[ 3, 196
3,2901 3.220[ 3.196
3,307 I3.224 [ 3. 196
3.330 3.229 3.196

3,333 3.230 3,196

It is seen that the oscillation frequency increases with the relative rib

rigidity5. The maximum frequency is attained for a rib radiusR between

0.5 and 0.65R_. Let the stiffening rib have a rectangular cross seetionwith

b R h

sides b andh. Setting -R-=0.143, _=0.55, _=3.5, andv=0.3, we obtain

6---/b-I/e _a, )kelk_,,ik_-l, 0-,')=3. We then find from the diagram that x.2q'-=14.

In this case the frequency of the reinforced plate is 37.1% higher than that

of the nonreinforced plate for which x_q 2 = 10.21. Since we have neglected the

mass of the stiffening rib, the curves in Figure 93 define the upper limits

of the frequencies.

Using boundary conditions (2.357) and (2.359) or (2.364), we can

similarly derive the characteristic equation for a circular or annular plate

reinforced by more than two stiffening ribs.

§ 6. AXISYMMETRICAL BENDING OF THIN PLATES

WITH CONCENTRIC THIN RIBS

We shall consider a thin circular or annular plate of thickness h, using

a polar system of coordinates(r, 0). The plate edge is reinforced by a thin
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elastic rib considered as a thin curved bar possessing tensile rigidity and

flexural rigidity in two planes. We assume that the axial line F of the rib

lies in the middle plane of the plate, to which one of the principal axes of

inertia of each cross section is perpendicular. The plate carries an axi-

symmet'rical load q(r) per unit area.

The stresses in the thin plate are in this case (]17/, p. 178) determined

bya deflection functionw(r} and a stress function¢(r), which must satisfy

the equilibrium equation

Dd(Aw)=_+ h d(l) dw (6.109)r dr dr

and the compatibility equation

E ld_,V (6.11o)

where

0

(6.111)

The bending moments and the stresses in the middle surface of the plate,
are

dw ) d(D
( d_w _) v 1

M =--Dk_ -7"dr ' a'=7"dr'

Me = -- D ._dT. + _ B_- , %= dis.

(6.112)

The strains in the middle surface are

The functions w and ¢must satisfy certain boundary conditions at the plate

edges. The boundary conditions for the deflections w were derived in §16

of Chapter II.

Thus, if the outer support contour r= R of a circular or annular plate

is reinforced bya thin elastic rib, we have for r= R [cf. (2.366)]

dw dZw
(5_ +v) _-+ R 2_ =0, w=0, (6.114)

where b, = EJ/RD is the relative flexural rigidity of the rib (./ is the moment

of inertia of the section with respect to the principal axis lying in the

middle plane of the plate).
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FIGURE94.

If theinneredger = R of an annular plate is reinforced by a thin rib and

subjected to a transverse load Po = eonst., the deflection w satisfies the

condition [at r=R cf. (2.367)]

dw _ d_w
(8_ -- v) _-r -- _ -j_-= 0

dw + R d2wdr -d_ + (6.115_

R2d 3w /kn
+ -_ =po_

We shall now derive the boundary conditions for the function ¢. The

plate acts on the rib with the radial forces P = const. [per unit length]

(Figure 94), in addition to the bending moments and shearing forces taken

into account in (6.114) or (6.115).

We require that the following conditions be satisfied on the axial line F

of the rib; 1) the tangential strains of plate (e6) and rib (e,) must be equal;

and 2) the radial forces of interaction between plate and rib must be equal

and opposite:

ee=e ., h%= ±PonP. (6.116)

Here % are the radial stresses in the middle surface of the plate. The

upper sign corresponds to a rib reinforcing the outer edge of a circular or

annular plate, and the lower sign to a rib reinforcing the inner edge of an

annular plate.

We determine the tangential strain e, of the rib from Hooke's law for a

curved bar (/141/, Vol. 1, pp. l17-119):

N M MR (6.117)_.=_+_;' P-_': g-V'

where N is the longitudinal force and M the bending moment acting on the

rib section; _ is the change [per radian] arelength, in the angle of rotation

of the section; g_ = E_F is the tensile rigidity of the bar; g, = EIJ' is its

flexural rigidity.
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In theaxisymmetricalcasewehave

p=0. M=const. N=const. (6.118)

Since the stiffening rib is thin, and the largest dimension of its cross

section in the plane of curvature is small compared withR, the symbol J"

in g, can be understood to mean simply the moment of inertia of the section

with respect to its principal axis normal to the plane of the rib.

The longitudinal forceNis in the case considered (/137/, p. 228),

N= --PR. (6.119)

Substitution of (6.118) and (6.119) in (6.117) yields:

PR

'*= g,+g,R-" (6.120)

If we neglect the flexural rigidityg2, as is usual when considering thin

bars of small curvature, we would obtain

PR (6.121)
,.= _ g-_.

Comparison of (6.121) with (6.120) shows that we can consider the

magnitude

B = gx+ g,R--2= ExF + E,J'R-_ (6.122)

as reduced flexural rigidity of the rib.

Substituting (6.120) in (6.116) and eliminating P, we obtain a further

boundary condition for the joint between plate and rib:

Rh at r= R
%= :F-Ea, (6.123)

Expressing a and e0in (6.123) through the stress function (_ (r) according

to (6.112) and (6.113), we obtain a third boundary condition onF:

d_Z) 4- I -- v6a d(D
-_-+ r6_'d-; =0 at r=R (6.124)

where

6,= B (6.125)
EhR

determines the tensile rigidity of the rib.

For ba = c_, we obtain from (6.124) the condition of immobility in the

radial direction of a point on F:

d'_ v d(I)
dr' r._-=O at r=R.
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For 8a=0, we obtain from (6.124) the condition that the radial stressesa
vanish:

dO
--=0 at r=R.
dr

In addition, the stresses a must be finite at the center of a circular plate.

The necessary condition for this is

d(D
_-=0 at r=0. (6.126)

According to (6.112), we can write (6.124) as follows:

r_a,_- l--v_ %=0 at r=R. (6.127)

If a circular plate (r _ R1) is reinforced by a concentric thin circular rib

of radius R < R1, we obtain at r = R four conditions for the function w and

two conditions for the function ¢.

Equations (6.115) are then replaced by the four conditions (2.368), and

(6.123) by

eet = ejo = (ho%o--hw,,) R at • = R, (6.128)

where the subscripts 0 and 1 refer, respectively, to the domains •>_ p and

r_R. We assume for the sake of generality that the plate thickness inside
the rib differs from that outside.

Proceeding as before, we reduce (6.128) to the following two boundary

conditions:

d_Dt vt d_l 1 {d_Dt d_Do ho_

d•' T

,,Odd_ O •dO,  .ho)

(6.129)

where 8._= B/EhIR.

By analogy with (6.127) we can write (6.129) in the form

d (l l _,,'_ o,, + -v, + E-)% -- g_%

•d % + (,_Vo_ h__,)_0 '=- b-;(,,,

(6.130)

Problems of axisymmetrical bending of thin plates with reinforced edges

will be solved below approximately by means of Bubnov and GalerkJn's

variational method and the perturbation method (method of a small

parameter).
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Bubnov'sandGalerkin'smethodappliedto the e,
bendingof a circular plate

Werepresentthedeflectionsw of a circular platein theform

n

w=_,, AFh, (6.131)
I--I

where the functions _=_(r) satisfy the boundary conditions (6.114) and the

constants A, are determined from the variational equations (]17/, p. 185)

R

I ,,=,2......, (0132 
X _ D d (Aw) --

h d_ dw
• dr _ (6.133)

dO
The function _2 is determined from (6.111), and the derivative -_ of the

stress function from the compatibility equation (6.110) whose integration

yields

! d/ dO\ E (1 elee _

0

(6.134)

Multiplying by r and integrating again, we obtain

r •

de _ e__.[ f_, (_V,.1 c.. c.
aT 2,_ l_,_o) 1"+_-+7"

(6.135)

The integration constants CL and C, are determined from the boundary

conditions (6.124) and (6.126) for the function_. From (6.126) we find that

C2=0, and from (6.124) we obtain

R

C1= l-k(l--v)53[Jr _dr ]
0

R •

"+"°-';[?R263 r 7
(6.136_

Thus,

2 el ?-

d--7= -- _ • -r -- dr dr -b -_- ,

0 0

where C1 is given by (6.136).

(6.137)
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Perturbation method applied to the bending of a

uniformly loaded circular plate

We adopt as perturbation parameter the maximum deflection f at the

center or, which is the same, the dimensionless deflection t[,= [/h (h is the

plate thickness). The plate carries a load q = const.

Following Ch'ienWei-ch'an /171/, we introduce the dimensionless

parameters:

°; = T q' - e U_]

(6.138)

Substituting (6.111) and (6.112) in (6.109) and (6.110), we obtain

1 an [ dw'] 3 .(l_.v,)__]_( I , .dw" (6,139)4 _ (l--x)-_X = i_ q -v )o, --_-x '

f(t -,,) °;] = _A { aw"_2
2 t dx ] " (6.140)

The functions w', o; and q" can be expanded by powers of _= _ in their

domains of convergence:

w" = w_(x)_ + w'_tx);"+ ....

o"= g, (x);, + g, (x)_, + ....

3.
•i-6q ( 1 -- vD = a,_ + aa_' + .... (6.141)

The odd-power terms in the expansion of o" and the even-power terms in

the expansions of w" and q" cancel out in the course of the calculations.

We solve the problem of bending of a flexible plate by the perturbation

method, substituting (6.141) in (6.139) and (6.140) and equating the

coefficients of equal powers of _. This results in ordinary differential

equations containing the unknown functions w_ and q,(x), and also the constants

a, with successively increasing subscripts. In a first approximation, we

obtain from (6.139):

-- 1. d.-_-'[(1 -- x) dw_' ] =a, (6.142)
4 dx" L" ax j '

which is the basic equation in the theory of bending of thick plates.

The second and third approximations are

d____t0 _ / a_ _'- x)g,(x)l = - _- k--_l '

4 d-_ (l--x) =.,---_-(l--v_g,(x) ax

(6.143)

(6.144)
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Equations (6.142) to (6.144) are integrated successively under the relevant

boundary conditions, remembering that w* -- _ air =0.

The influence of a stiffening rib on the bending of a thin plate will be

considered below with the aid of examples.

Uniformly loaded circular plate with reinforced edge

The problem of bending of a uniformly loaded circular plate with thin

elastic support rib will be solved by Bubnov and Galerkin's method. We

represent the function w((6.131)) as the deflections (2.281) of a thick plate

with support rib under the same load:

w=[a --2_-[-b ---/qt, (6.145)

where R is the plate radius, [= w,=0,

3-}- v + 5, 1 + v -{- 5L (6.146)
a=5+v+8_' b=3+v+6_"

Here f is a parameter.

Substituting (6.145) in (6.137), we obtain

d¢D EFa a [ r 3 rs r'd-7=-_ 6-_+4b_--b2-_v+_l(6--4b+b')+
I.

1 ] (6.147_+ 16 (3 -- v) -- 4 (5 -- v) b -i- (7 -- v) b2l 8.} 1 + (I -- v) _, '

For a uniform load (q= const.), (6.111) becomes

qr
4 = -_-- (6.148)

Substituting (6.148), (6.145), and (6.147) first in (6.133) and then in (6.132),

we obtain

k,_, + k2_= q*, (6.14 9)

!
where q*(g) is given by (6.138), g=-_,

2a s [21b'-- 56b -[- 42

k,= 21(2b--3)[ ]_{-(]_--_5_ {[6 (3 -- v) -- 4 (5 -- v) b +

+ (7 -- v)b2l5_ + (6 -- 4b + b')}-- 12b' + 84b a-- ( 6.1 50)

-- 252b ' +336b -- 168],

16ab

k,= 3(I--'_')" (6,151)
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We consider certain limiting cases:

a) b, = ¢o, i.e., the stiffening rib is inextensib!e;

are fixed. We obtain from (6.150)

points on the contour

-I- 42) -- 12b4 -]- 84b "_-- 252b"- + 536b -- 168].
(6.152)

b) 8a= 0, i.e., points on the contour reinforced by the rib move freely.
In this case we obtain

2a $

kl = -- 21 (2b -- 3i [9b' -- 56b a + 140b "_-- 168b + 841 . (6.153)

Setting in addition 5, =0, i.e., assuming that in (6.150) to (6.153)

3+v l+v
a=_---_, b=3+ v,

we obtain the coefficients kx and k_ for a nonreinforced hinged plate (/17/,

§§ 41, 42).

c) 5, = ¢_: 53 == =, i. e., the plate is clamped along the contour whose

points are fixed. In this case a = b = l, and we obtain from (6.150) and

(6.151):

2(23 -- 9v) 16 (6.1 54)
k_= 2tO--v)' /¢'= 3(l--v'-------_"

d) 8, = _. 8, = 0 , i. e., the plate is clamped along the contour whose points

move freely. In this case a =b = l; we obtain from (6.153):

6 16 (6.155)
k, = --¢-, k, = 3 (l -- v2) "

The stresses in the middle surface are found by substituting (6.147) and

(6.138) in (6.112):

a_' [ _r _ r 4 ,r* I
_* _- ---_-[--b-_ + 4b_--b _q- 1 + (l--v)b; [6-

-- 4b -{-b'+ [6(3-- v)-- 4b(5-- v)-{-b'(7--v)]88}]

-.--%'4+ : ': '20b_ -- 7b _+ l -{-(I--v)a,{6-

-- 4b -F bS + [6 (3 -- v) -- 4b (5 -- v) + b' (7 -- v)I 5,} ]

(6.156)

277



At the plate center we have

a"-_2

o'=o_ = 6114- (l -- v)6al {6-4b4-b_4-

4- [6 (3 -- v) -- 4 (5 -- v) b 4- (7 -- v) b'-] 8a}.

(6.15v)

The maximum bending stresses are

6M, 6M, (6.158)
ar.u _ --_-'. ao., = h2 .

where the bending moments M, and M0 (6.112) are expressed through the

deflections (6.145). Writing

• o,2 ao,,,= T h-Ore,U _ o (6.159)

we obtain

a,,, = i--_-- _ (1 4- y)--b(3 4- v) ,

• 2a_ [ r']a0. _-]---_-- _ (l-}-v)--b(I 4-3v)_/ .

(6.160)

From (6.156) we can determine the rigidity 8a ((6.125)) of the stiffening rib

at which no compressive stresses o0 appear along r =R (a_:_0), so that

buckling cannot occur. This will be the case for 6 a_l. Values ofq*(_),
'v

obtained from (6.149) for a plate reinforced by an inextensible rib

(68=o% 8_0),are given in Table 29 for different rigidities6_, withy=0.3.

"]'ABI,E 29. Values of q*(_)

0.5
1

1.5
2

2.5

3
3.5
4
4.5
5

0

1.05{

4.09:
II.12
24.14

45.12
76.08

I19.0
175,9

_48.7
339.4

1.229 t 1.381

4,383 4.63!

11,38 II .64

24,16 ] 24.28
44,62 44.4[
74,71 73.92

116,3 1114.7
171,4 1168"6

241.9 1237.4
329.7 | 323.2

/

2 5

1.6271 2,08_

5,074 5.95z
12.16 I 13.37
2,1.70 26.13
44.51 45,99
73.42 74.74

113.2 .114.2
168,8 ]166.0

232,9 1232'1
316,4 314.2

I 25

I
I

2.465 / 2.859
6.741 | 7.620

14.6,1 ] 16,18
27,96 [ 30..14
48.52 | 52,30
78.14 | 83.65

118.6 | 126.4
171.7 | 182.5
239.4 | 253.7

323.3 / 3-t2.1

3.275
8.622

18.11
33.82

57.81
89.15

138.9
200.2
278.1

374.6

It is seen that an inextensible stiffening rib (points on the contour r = R

are fixed) markedly influences the rigidity of the plate only at small

deflections. Furthermore, when _ _ 2.5, we find that at many values of

8L the rigidity of the reinforced plate is less than that of the nonreinforced
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plate. This seems unlikely. Hence, approximation by the first term only

of the expansion (6.131) of the deflection w is insufficiently accurate when a

stiffening rib is provided.

Case of eoneentrated load

The plate is loaded by a concentrated force P, at the center and reinforced

by an elastic rib along the support contour • = R. We solve this problem

byBubnov and Galerkin's method, by representing the function w ((6.131))

as the deflections (2.284) of a thick plate with reinforced edge under the
same load:

where

f_ r2 /
_ ! r ---- ITh,w=l I g_+2b_ n-_ (6.161)

1 + v+bL
b=3+v+8 • (6.162)

Substituting (6.161) in(6.137), we find

dep Eprs Ill +v + _t)_(In_R-- 3 r

EI': [+R_(B+v + 6D'II+(l--v)b,l" 1 + (6.163)

while (6.111) becomes

, = PI2nt. (6.164)

Substituting (6.163) and (6.164) first in (6.133), and then in(6.132), we
obtain:

k&?+ k2_,= P*, (6.16 5)

where

4a PR'
k,=3(l.v,X3+v+6t ), a=(l+v+6,), P*-----E-_-, (6.166)
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8 ,7,4,,13

7 = 3 I/.
-_a +_a+ I

(6.166)
(cont'd)

Assigning different limiting values to the parameters 8, and 83, we obtain
the values of k I and k.. in (6.165) for various support conditions of the plate

(of. the preceding example).

The stresses in the middle surface are at r = 0:

o_=o_ (3 + v + 6,)_'[1 +(I- v)831 a'+-a2-a+ 1 +

+ [_a'+ 5-3v a+ (3--v)]8_1.
(6.187)

Atr=R

l_(a 2 + 4a + 8)63
o; = 4(3+ v + 61)211+ (1 -- V)6al'

g_(a'- + 4a + 8)(v5,-- 1)
o; = 4(3 + v + 6,)"-11+ (I--v)b-_'

(6.168/

Refined solution by the perturbation method for

a uniformly loaded circular plate

A uniformly loaded circular plate with elastic support rib has already

been considered, using [ as single parameter in the expression (6.145)

for the deflections w. A different procedure will be employed in this

section, based on the perturbation method.

Let the magnitudes w*, o:, q* ((6.138/) be given in the form (6.141/. We

require that the first approximation w_, which is a solution of(6.142),
satisfy the boundary conditions (6.114) at r=R. Substituting (6.132) in

(6,114), we obtain

dw; a'_,: }
(1 + 81 + v)--_--- 2 _ =0 at x=O. (6.169)

w;' =-0 (6.170)

In addition, the derivative _ must be finite at the center of the plate:

dw_ "i

o - x) -az-J,=, = o. (6.171)

Since at the center t_ = _, we obtain

_.I _( ,h=, I. (6.172)
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Integrating(6.142)twice,weobtain

(1 -- x) -_x- = -- 2axx 2 -4-Cxx -4- C,. (6.173)

From (6.171) and (6.169) we find

2 (61 -- I + v) a I 4al
C1 l-4-v+St ' C2 1-t-v+61" (6.174)

Substitution of (6.174) in (6.173) yields

( )2
=2¢h X+l+v+61 " (6.175)

Integrating (6.175) and using (6.170) and (6.172), we obtain

• (1 +v+6,)x _ 4x I+v+6L (6.176)
w,-- 5+v+61 +5+v+6, 'at 5+v+6,"

The deflections w_ obtained coincide with the deflections (2.281) of a thick

plate with reinforced edge.

Substituting for w: from (6.176) in the right-hand side of (6.143), we obtain

as second approximation

x) g2 (x)] = -- _- _--_x / = -- 2 M x -- _ _- x -- _, (6.177)

where

a= 1 +v+6,. b= 5+v+ 61. (6.178)

Integration of (6.177) yields

(6.179)

The constants A' and B" are determined from (6.124) and from the

condition (6.126) that the stresses ar at the plate center be finite.

Substituting (6.138), these conditions become:

x)-d_-=O at x=O .

Vl--'-;x d =o at x= 1
(6.18o)

We require that g2(x) satisfy (6.180):

/ / }l--v+_- gt(x)--2(l--x) =0 at x=O .

IV'i--_--xg2(x)=O at x= 1

(6.181)
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We obtain finally

A" (a_-t-8a-b24)[1--(l+v)6_] B' (a_ + 88 -4- 24)63
= 6b_l I -t- (I -- v)681 ' = 36211-t-(1 -- v)6a] "

(6.182)

Hence,

1 [ 2(a_-1-88-4-24)86 ]g2(x) = _-2 I "4- (1 -- v)6_ q- a2(1-4-x q- x'a)x -4-8a(l+x)x q-24x .
(6.183)

Substituting for w_ from (6.176) and for gdx) from (6.183) in the right-hand

side of (6.144), we obtain the third approximation for w_, which must satisfy

the boundary conditions (6.169) and (6.170) at the support rib:

e,,,; e,,,,;
w;=O,(l-t-v-t-6, d}_x_ --2--_-r-x, =0 at x=O. (6.184)

In addition, we must have at the center of the plate (of. (6.171)):

(l -- x) -d-7-x =0 for x= 1. (6.185)

Taking 6.172) into account, we also obtain

w; = 0 for x = I. (6.186)

Integrating (6.144) and determining the integration constants and%

from the boundary conditions (6.184) to (6.186), we obtain finally

1 --_-4_ [73a4 + 7768 '_ -I-33008= + 6720a + 5760 +as= 360b

1-_ -_7"-206_ ]-4 ,e)6 (5a4+ 70a 3 q- 432a _ q- 12968 -f- 1728) ,

1 -- v s

w_ = _ [(43a s + 356a _ + I020a -b 960)(ax 2 q- 4x) --

2ba_x e- 6ba_(a .-}- 6) x _ -- 15b(a s + 8a _ -4- 20a)x 4 -- 20b (a 3 q- I0a"--4-

( 1 -- v _) ax63

•4- 36a q- 48) x'1-4 9b 4 [1 + U -- v) 68] (a_ q- 88 -4- 24) (ax q- 4 -- bx').

(6.187)

Proceeding only to the third approximation, we find from (6.141):

a,_ -_- a_ 3 = ] 3 q* (1 -- v'). (6.188)

where % and % are given by (6.176) and (6.187).

The stresses o" and a; a .• =_r(r%) in the middle plane are [by (6.183)]:

o_ = a _ (x s -b x' 4- x) -t- &'_( x'a + x) -4- 24x + 1--- v -1-6-----_(82 q-" 8a q- 24) ,
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o;= _ [.,(7_- x,- x- 2)+_ (5_- x-2)+ 24_3_-2)+

2 (a'+ 8a + 24)]_2.+ i_,_ + _7,

The bending stresses are given by (cf. (6.159)):

l+v. , I -t- v.
+_La +6a _)x 4+_(a +8a _+20a) xs+

1 -[- vr s 2 (a3+ 8aLF 24a)]xl+ -_i-[a + lOa 2 + 36a + 48 -} i _ v + 8__,

_ 1 -{- v [ 4:_,4 40
180b' [--- + 356aa + 1020a' + 960a -4 1 -- v + 6_-' (a' + 8a s +

+24a')] 1 + v r sx -- _ [43a + 356a 2 + 1020a + 960 +

40 ] a'-}" 1 -- v nt- 671 (as -t- 8a' -t- 24a) -- (1 -- x)x* 3ba

2 , a 1 s ,
3,_(a -f-fa')(l--x)x -- _-_(a q- Sa + 20a) ( l -- x) x" --

2 s 2 6__,(a_+Sa,q_24a)](l_x)x +_[a "4- lOa'-4- 36a-4- 48 + l--v+

19_b4X[ 40 (a4+SaS+ 24a')]} _a,•+ 43a + -[- 356as -4- 1020a' -4-960a -q- ] _ v + b_-t

2 lax+2-- 2av (l--x)]_--'l+v 3. '= I'-_ax "-I-

'+_" +-_,_c.' + _' + +--_,-[o+to,,,++_ta +6a I) x _ 20a)x'" l+v[ s

2 , ]_ l+v[q-36aq-48--} l_v+6_l(as+Sa +24a) x--!__ 43a4+

40 (at 4- 8as -4-24a')] x --+ 356a s .4. 1020a 2 4- 960a -4 I _ v -4-8_-I

1 + v [ s , 40 (a s + 8a=+-90--_- 43a +356a 4- 1020aq-960"1-1 .v+,__,

va = 2v+24a) --_-_(l--x)x _- _-_(aSq-6aa)(l--x)x '_

v s 8as 2vf
---_-(a + + 24a)(l--x)x" 3bs [a --[- lOa'q--36a q- 48q--

,_(1--x) [_.a,,,2 (aS .q- 8at q- 24a) x(! _x) + 90b' L-_- q"•-t l_v+_7 t

40 (a' +Sa'+ 24a')]} _.+ 356a'+ 1020a=q--9fiOa 4 I -- v "4-_a-'
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The influence of the stiffening rib on the stresses in the plate can be

appraised from the values of %, a_,%.., a_.., calculated for a rib of

rectangular cross section (widthbL, height h_), in which case

__ e, ._h_,f,,,Vf I 12g .El bl :(l--w*), 6: -F
0,=-_--_- - 12E h t n ) \

ht bl
The following assumptions were made: v: 0o3, _i- = 3, _- =0.1. Different

El
values between 0 and cowere assigned to _ = -_ , which determines the relative

rigidity of the rib. Figures 95 to 98* give the stresses atthe center and at the

edge of the plate as functions of _ for differentvalues of 8. The curves of the

stresses o,*._in Figure 96 were plotted for the upper surface of the plate,

and the curves of the stresses o_.. in Figure 97 for the lower surface.

/, _=7

0 k _:5\
2

0.4, 08 1.2 1.6 2.0 2,4
FIGURE 97.
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FIGURE 98,

* The calculations were performed by P.L. Katz in his diploma thesis.
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It is seenfrom Figures95, 96, and98thatfor fixedvaluesof_,(a_).,=0
0"*and ( ,.,)x=0 increase with the rigidity of the support rib, while the absolute

values of (oI),_ 0 and (a_.,)x. 0 first become zero, and then increase. When _>4,

a_.,first vanishes at the center of the plate for _>2AS(Figure 97), and then

becomes negative. This contradicts the experimental results ]17]. Higher-

order approximations are thus necessary to calculate the bending stresses.

90

80

70_ q-

6O

5O

4O

3O

20

I0

0

$

7
/ /

• 6" 6"
@e, tot)t,O r,tot)t,( r,tot)o

15

/
I0

-#

/ "\ ,

0.4 08 t2 f6 20 2.4 "_ 0.2 04 0.6 0.8 1.0_

FtGU}_ t)',). FIGURE 100.

We determined the influence of the stiffening rib on the deflections of

El(Figure 99). If the
the plate by plotting q* (_) for different values of _ = _-

rib consists of the same material as the plate(b= 1), a loadq*= 13.09

causes the same dimensionless deflection _ = 2.8 at the center as a load

q* ---- 27.68 applied to a nonreinforced plate.

Figure 100 gives, for q*=25, the maximum total normal stressesar.:_ t

and °_.tot at two points 0 and L of the plate (cf. Figure 96) as functions of

8

×----5-'-_" The influence of the support-rib rigidity oa the stresses in the

plate at a fixed load is clearly seen. The broken line in Figure 100

represents the dimensionless deflection _ at the plate center as function of

× for q* = 25.

From the stress curves (Figure 100) we can select the optimum value

of 8 with respect to strength. In our case the stresses become minimum

at x_0.22, i.e., 8-_0.56;(ar.tot)L_to_.tot)0_ 4.'t5 . This is 56% less than the

theoretical stress (a_.to t )L= 10.27 in the nonreinforced plate. When u,-_0.22,

the maximum deflection at the center is 17% less than that of a plate

without rib.

We can solve similarly the problem of reinforcing the inner edge of an

annular plate, using the boundary conditions (6.115) and (6.124).
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§7. SOMEOTHERPROBLEMSCONCERNING
PLATESWITHCURVEDSTIb'FENINGRIBS

Manyauthorshaveconsideredtheinfluenceof curved*elasticribs on
thestressesandstrainsof plates.

In moststudiesundertakenbefore1950theelasticrib reinforcingthe
edgeofa holein a thinplatewasconsideredto bewide, thestressesin it
beinggivenbySophieGerman'sequation.

This formulationappliedmainlyto problemsconcerningsimpleor
built-up ribswith uniformcrosssectionsaroundcircular holes. Problems
concerningreinforcementsaroundnoncircularholesusuallygiverise to
considerablemathematicaldifficultieswhichimposesevererestrictions
ontheshapesof thecontourstobechosen.

Themainresultsobtainedby thevariousauthorsaregivenin [8/,

/118/, and /187/.

The above-mentioned mathematical model cannot be used when the

elastic stiffening element is thin or has an irregular profile. The mathematical

model for the stiffening rib is in such cases usually a curved thin elastic

bar of uniform cross section (of. §1 of Chapter IV).

The problem of bending of an unbounded plate having a hole with

reinforeed curved edge can be solved in this formulation by Sheremet'ev's

method of successive approximations /187/; solutions were thus obtained

for elIiptical as well as for triangular and square holes with rounded

corners (/71/ to /Ta/). Generalizing Sheremet'ev's method, Martynovich

/74/ obtained an approximate solution of the problem of bending of a thin

plate occupying a doubly-connected region forming a confocal elliptic ring

with reinforced edges.

Unbounded anisotropic plates reinforced around circular holes were

considered in /187/ and /190/.

Bending of circular and annular plates with concentric stiffening ribs

was discussed in 128, 31, 53, 101, 105, 106, 131[, etc. In 11311 the

stiffening ribs, arranged nonsymmetrieally with respect to the middle

plane of the plate, were in the axisymmetrical case considered as short

cylindrical shells of uniform thickness. Passing to the limit, solutions

were obtained for cases in which the stiffening element can be considered

as an unbounded shell or thin ring. The range of application of the various

solutions was also considered.

The saving in weight achieved by reinforcing the plate was studied in

/27] for a c_,_e of axisymmetrical loading of an annular plate reinforced by

annular or radial ribs.

The influence of annular ribs on the carrying capacities of symmetrically

loaded circular and annular plates was considered in detail in [14, 15[,

/174, 175, 175a1.

Determination of the critical forces in the case of symmetrical buckIing

of circular and annular plates with concentric thin ribs was discussed in/la/.

° We disregard here tile numerous papers dealing with the influence of straight ribs on the strength, rigidity.

stability, and vibrations of thick and thin plates (cf. for instance. /1'7/,/18/./19/./59/,/136/,/137/. etc. ).
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Chapter VII

SHELLS WITH STIFFENING RIBS

§ 1. BOUNDARY CONDITIONS FOR A SHELL WITH

A HOLE WHOSE EDGE IS REINFORCED BY- A

THIN ELASTIC RIB

Consider a thin isotropic shell':' with a hole whose edge is reinforced by
a thin elastic stiffening rib whose axial line F lies in the middle surface of

the shell.

Let _, _, _ he a system of orthogonal axes at each point on F. The n axis

is normal to the section of the shell along F, the b axis is normal to the

middle surface of the shell, and the _ axis is tangent to r. The axes

g, _1, _ of the principal trihedron of P form with the n. b, _ axes angles

(Figure 101) whose cosines are given in Table 30.

TABLE 30 "_ _ _ ___1_

m_ i i 0

0 0 --I

FIGURE 101.

The theory of small deformations of thin bars possessing double

curvature ] 66, 87, 102], leads to the following equations describing the
deformation of the stiffening rib:

1) The first group of Clebsch's equations, by which the extensibility

of the axial line of the rib is approximately taken into account:

e,_=_
ds _ + c°-_-°'u°',,_, _,_ (7.])

d 0 0 0

0t = _-_ u_ + 0)_u_ o_u_,

d o
_o= _-._ + %"_-- %.{,

(7.2)

(7.3)

* An extensive list of papers on the theory of shells, publi"shed in the USSR up to 1957, can be found in

Oniashvili's survey/91/. For surveys devoted to particular problems of the theory of shells, see Bolotin

/4/, Kil'chevskii/51/, Kovalenko/358/, Mushtari/84/, Savin/119-121/, and others.
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where_= 8_4-0_-_-e_ff is the vector of rotation of the moving trihedron

_, _, _;ul, _, u_ are the projections on the corresponding axes of the displace-
ment vectors of points onF; e0 is the unit elongation of F; s is the arc

length measured on F.

2) The second group of Clebsch's equations

d d

(7.4)

where _, _%, 0_ are the principal components of the curvature and torsion

of the rib, and fi_,tic0.,fic0_are their corresponding increments.
3) The equilibrium conditions

_-_V_ + e,_V_-- _g_ + _ = 0

_.a'v,,+ _v_ -- ,_v_+ p,,= o} (7.5)ds

I

L,+ v, =oI
I

_L. +_.q--_o_L_ + v, = o], (7.6)
I

J

where _(Vt, V_, V_) and [(L t, L_, L 0 are the principal force vector and the

principal moment acting in section s of the rib;_(p v pn, p_) and m (0,0, m 0

are the applied force and bending moment acting on the rib, per unit length
of its axial line.

4) Kirchhoff's equation

• Ln 6_o_ = _----_,6e_ = _-_-,8_,, = _-, (7.7)

where A and B are the flexural rigidities of the rib, referred to the _ and

axes; C is the torsional rigidity of the rib.

In accordance with Hooke's law we assume approximately

V_
to = _--_,_, (7.8)

where E,F is the tensile rigidity of the rib.

The boundary conditions at the 3oint F between shell and rib are:

,_=,,I, ,,.=.,_, ._=_, (7.0)
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OaIB ttn U_

0:=_ + R_ R,2' (7.10)

t 0 T eS =-- --p. + S, = Pc "4- T °,

Q_=--pb+Q °, Mn=m_-i-M°, (7.11)

where S' and T' are, respectively, the reduced normal and tangential

forces, Q_ is the generalized tranverse (shearing) force, and M,,the

generalized bending moment acting in the shell section whose normal is n;

P.' Pu Pb, m_ are the corresponding forces and moments acting on the rib;
1

R-_ is the curvature of the normal section of the shell through the normal to

!

F;_ is (/26/. p. 100) given by (7.58) below; h is the thickness of the

shell; the displacement vector of points on the middle surface of the shell

is

_'(,,, w, u) = _'(% % t9.

From (7.9) and Table 30 we find

(7.12)

u[=mtua-J-l,w, u°=mtw--ltu,, u_ u,

Substituting (7.13) in (7.1) to (7.3) and (7.10), we obtain

(7.13)

IOn -= -- o_nu,-- % (rn,w-- l,u.) + -g_(m,u. + t,t@

0

O_= -- % (m_u + l,w) -- to_u -- g; (ta,tv -- l,u .) l'
!

o_ u. u, I

oo= + E + l
0

% = % (m,w--/,u.) -- o_(m_u_+ l,w) -- _ %

(7.14)

(7.15)

Substitution of (7.7) in (7.4) yields

Equating the right-hand sides of (7.8) and (7.15), we obtain

V;== ElF ( %,w--%u,,-- -_Oi=u l,/

(7.16)

(7.17)
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where

_n ----"rtllm_,-- II°'_, t% -----llt_. 4- ml% f

The projections on the _ and b axes of the forces p_ and p_ are

PA = mlP_ -- llP,_' Pt, = l,p_ "4-miP, r (7.18)

Substituting in (7.5) for V_. V,1, andVc from the first two equations (7.6) and

from (7.17), we obtain Pt' P_' and pC expressed throughLy, L, L;, andV u

In particular, the third equation (7.5) yields

We obtain similar expressions forp_ andp_, whose substitution in (7.18)

yields

0

--OI[_,L,I--%ILc---O_ " L,]

0 L
p,=o,V, +O,[m_L,--o,l¢+_-_ ,i]--

o
(7.20)

where

In addition,

O,[ ]--(o_m,+l,_-)[ ], O_[ I=(o_/_--nhO)l

the last equation (7.6) yields:

1. (7.21)

m_ = mnLg -- Ù_Ln -- 0-_L_. (7.22)

Substituting (7.19) to (7.22) in (7.11), we obtain the following boundary

conditions on F(/157, 160/):

0

O L

0:o _o.v,_o[o°._o,,,

(7.23)
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Theright-handsidesof(7.23)containthemagnitudesL_, L,, /4, V_, which

by (7.16) and (7.17) are expressed through the displacement components

u,,, ,,, w . The left-hand sides of (7.13) are determined from the displacement

components by the formulas of the theory of shells (cf., for instance, /26/

or /16/).

Equations (7.23) thus represent the boundary conditions for the three

components of the displacement vector at the joint between the shell and a
thin elastic rib.

Boundary conditions are similarly derived for the case of a thin elastic

rib reinforcing the outer edge of a shell. If the stiffening rib is located

anywhere on the middle surface (not at the edge of the shell), the boundary

conditions for the parts of the shell adjoining the rib will have the same

form (7.23). In this case, S'.T'. Q_, and M: are the jumps across F , in the

corresponding forces and bending moments per unit length. In addition,

we must then add to the four conditions (7.23):

w+=m-, u_=u_-, u+=u_-, 0_-=0_- on F. (7.24)

§ 2. CASE OF SHALLOW SHELL

In the case of a shallow shell we can make the simplifying assumption

that the binormal "b to F remains fixed in direction (this assumption is

exact for a plane curve). Hence, the torsion of the axial line of the rib is

zero.

We also assume that m, and l, (cf. Table 30) are constant, so that the

torsion of the rib [as awhole] is also zero /66/. The projections of the

vector _ on the _,_,_ axes are then

It ml

=_"T' =_=T' =_=0, (7.25)

1 o

where -- zs the curvature of the rib.
0

Substituting (7.14), (7.16), (7.17), andS'7 ._ , ,__7.c.,.,i , we..../ in obtain'::the

boundary conditions on the joint F between the shallow shell and the thin rib:

_ etF.a,, a . a. f,__._a"_ I

a (a'_ 1 o_\|,

o o,,, ,

(7.26)

(7.27_

_tl tt

* In the expression (7.10) for Ogwe have neglected the small terms _ and_t j, as is usually done in the

theory of thin shallow shells (/16/, Chapter VII).
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atw
M_=MO_C_s/ a_w ! Ow\+ ! I Ow _st) -

0 o, ]l' (7.2s)

a a_ a_ a _ a,m _'_IQ:= O°--P_(_ -_ : ,_) +_-[c-_(_-_ + ' o_

_* [u, Ou, _1,
-- Y _-_s2_"_- -- "_" ] J (7.29)

f$'=m'lB-t- qA, _= m_tA A- qB, ¥ ----I,mt(A--B). (7.30)

Here S and T are, respectively, the normal and tangential forces in the

shallow shell at r. The boundary conditions on F have the form (7.26) to

(7.29) also in the case of a thin plate, whose edge is reinforced by a thin

elastic rib, if neither principal axis of inertia of a rib cross section lies

in the middle plane of the plate.

We shall consider some particular cases.

1) The rib is perfectly flexible, i.e. , the edge of the shallow shell is

not reinforced. Setting in (7.26) to(7.29) A=B-=C:EIF=O, i.e.,[_'_

=_=y=EtF=O, we obtain

S = S o, T = T o, M, = MO, Q: = QO, (7.31)

as ought to be expected.

2) The rib is perfectly rigid, i. e., A =B----C-----EIF,,-co .
$

conditions for S,T,M_ and _Q'_ds to be finite are in this case:

Ou,_ u,, O I u_ Ou.
_-+-_ = o, _-_-_-w) = o.

O'aw F 1 &v O_w l Owarias _._=0, _-s,-T._=o

The necessary

(7.32)

(7.33)

Integrating the second equation (7.32) with respect tos, we find

_- -- --_-- =t, (7.34)

where eis a constant. From (7.34) and the first equation (7.32) we form the

complex expression

0 . i (7.35)
(u. + tu,) + -_ (u. + iu d = -- e.

We have

(u. + i,t_) } = i (u + iv1,

where u and v are the projections of _ ((7.12)) on the x- and y- axes fixed in the

plan of the shallow shell. Using (2.16)in its complex conjugate form we can

rewrite (7.35) as follows:

0
b-f(u+ iv)= ire
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Integrationwith respectto s yields

u + iV = is(x + iy) + (uo + ivo) on r,

where (uo + lvo) is a complex constant.
We similarly rewrite (7. 33), first as

and then as

a ow io_ I 0w+

°_L k_+; =0 o_r.

Integration with respect to s yields

dV_._q_ _.._ideO=(C,q_iC, Xx..b i_)on F,

where (C_q-iC2)is a constant.

Integration of (7.38) yields

(7.3G)

Hence

a_ = c,;,-c_. (7.37)

= C,y + C,;,. (7.38)

w = C,y -t" C,x + Cs on r, (7.39)

where Cs is a constant.

Equations (7.36), (7.37), and (7.39) are the boundary conditions for a

shell whose edge is reinforced by a perfectly rigid rib along r. As ought

to be expected, these conditions define only rigid-body displacements and

rotations. The coefficicnts ,, u0. v0, C1, C,,Ca are determined from the six

equilibrium conditions for the rib.

3) Consider now the case when one of the principal axes of inertia of

each rib cross section lies in the middle surface of the shallow shell. Then

(7.40)1,=0, rat=l, y=0, [_=A. I_'=B

and the boundary conditions (7.26) to (7.29) reduce to

q" = Qo + _._ I 0 _an as + -O-"E_ + as On

(7.41)
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Thelast twoconditionsare, of course,identicalwith(2.355).
4) If, in additionto(7.40), weassumethatF formsa circle of radius

Q=Q0= const., we obtain from (7.41)

_ I O' (ux___k)+ 1 /Ou__l_uo)

1 02

-o -1 a/8_ 1 _.,)

Ow
o I O 1 .0_) +

or, o,,, _ ._

' (7.42)

where the forces and moments are represented inpolar coordinates (o, L)
with origin at the center of the hole (r = --n, X =--x).

5) If the stiffening rib forms a support, (7.29) must be replaced by the

o_ O_
condition w=0, and (7.26) to (7.28) are simplified by setting 0s =d-_ -=0"

In this case (7.29) serves for determining the reactions along the support
contour.

§ 3. TRANSFORMATION OF BOUNDARY CONDITIONS

The boundary conditions (7.26) to (7.29) for a shallow shell can also be

represented in terms of the stress function O(x, y) and the deflections w(x, y)

/16/. Using (2.16) we write,

0_-" o i [ii(. + iv)l,_ (u. + iu.) = [it (u + iv)l = i_ (u + iv) - -_ (7.43)

where u,v are the projections of the displacement vector on the x- and

y-axes, respectively; Q is the radius of curvature of F.

Hence,

Remembering that

Ou° _.

0 -a .o

N= X Ox+ YO-[j,

(7.44)
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we separate the real and imaginary parts in (7.44):

a-T+_-=xY ax+_ + ®+Xax

(7.45)

For a shallow shell we have

a_=E - @_-_o_-) Q_

fav 1 _0_-0 Owp \ w

av Ou 2(l + v) 020
_+®= E •ax--_

(7.46)

1 !
where -- and -- are the curvatures of the middle surface in the x - and

{_z Qu

g-directions, respectively. Substituting (7.46) in(7.45), we find

0--%-+ _ = _- L, [o}+ \0,

a [a,,, u,'_ 1 • a /m\ .a /w\

.a
+(x_+" a .. w w

(7.47)

where

L, lO] (_:_ ", a2° -', "2 a2o .. olo
= vx )0-_- + (x -- vy ) _-i-- 2 (1 + v) xu_-_

/-_[O] ex(1 ' "_ ' "" a_° ", OaO

•: a_O
--_x[1 +2v--3(1 +v)x ]Ox--x_Og+

",1O_O

• [,': ":. faro O_'O\ • ' a:O ]
+(, + -

It follows that (7.26) to (7.29) can be written as follows:

S= s°--EJ: {I L,[O]¢ + Ls[w] } +

Of O/O'_w ! _) _,O/l

(7.48)

(7.49)
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where

0 I

T = TO .q-EIF_- {_-Ll[Ol-I-LalwI}-k

Ow1 [ O [Ot_: 1
+ a)_ . a ,

M,, = .._o -F _- _-_

P a,, a: j as _a,,as+_"_-)

a, j_ }Q. = QO + Yas, [e.E L, tO] + L, V"I +

a C 1 aw_l a I _)

(7.49)
cont'd

+( .0 w w

1 o_ _
For a spherical shallow shell with 0_ = ey =/?we have _[w] = _-._-, L_ [wl =-_--.

The terms containing w in the first two equations (7.46) should be omitted

in the case of a thin plate for which the boundary conditions are obtained

from (7.49) by setting L, lwl = La[wl = 0 •

§ 4. DIFFERENT WAY OF DERIVING THE BOUNDARY

CONDITIONS FOR A SHELL REINFORCED AT THE

EDGE BY A THIN RIB

Let the shell edge form the smooth closed curve I" which corresponds to

the curve _ = const, in the plane system of curvilinear coordinates (a, _).

A thin elastic rib is welded to the shell along this edge. The shell is loaded

arbitrarily.

By the principle of virtual displacements we have for the system shell-rib

aVo + 8VR--6W = O, (7.51)

where 8V0 is the variation of the elastic energy of the shell; 6VR is the

variation of the elastic energy of the thin rib, considered as a thin bar of

double curvature, 5tV is the work done by the load on virtual displacements
of the shell.

Let us visualize the rib severed from the shell, and consider the

equilibrium of the latter when subjected to the specified load and to the
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unknown forces and moments of interaction with the rib, applied alongl _.

By the principle of virtual displacements

6Vo -- 5W -- 5Wr = 0. (7.52)

where 5Wr is the work done by the elastic forces and moments with which

the rib acts on the shell alongF, on thecorresponding virtual displacements
and rotations of the middle surface.

Subtracting (7.52) from (7.51), we obtain

6VR -4-5Wr = 0. (7.53)

We write (/26/, Chapters II and IV)

(7.54)

where R is the principal force vector and _ is the principal moment acting
in the normal section of the shell alongF; 5U is the vector of the virtual

elastic translations of points on the middle surface; 5_ is the vector of the

virtual elastic rotations:

= 8.: + = 80:.i'+ +  0,S,
(7.55)

where 7,_, _ are three orthogonal unit vectors; the direction of F is along

the tangent toF, that of n along the normal to the section of the shell.

Substituting (7.55) in (7.54), we obtain

5Wr = I (S,Su, -- Tnbu; + Qnbw -- MnSe; + HSOa) ds. ( 7.5 6)

We have

o 5ut + 5u_
80,=--_(5w)--_ R-_I2' (7.57)

1

where _ is the curvature of the normal section along F of the middle

surface of the shell,

l sin2X( 1 1) (7.58)_----_ _-_,,

R,, R2 are the principal radii of curvature; X is the angle between F and the
1

direction in which the normal curvature of the surface is _.
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Substitution of (7.57) in (7.56) yields

._u t1_

(7.59)

Integrating the last term by parts, assuming 8w and H to be continuous

on the closed contour F, we obtain

_r = I (s_,6_.- T_,k-i-q:_w--m,Ae_)ds,
(7.60)

where

s tl _t_H OH (7.61)
s'n= n+-_-_, r'_=Tn RI' Q'_=Qn+-_"

Neglecting the terms depending on the transverse forces, the elastic energy

of a thin rib is ([I03/, Vol. I, p. 580):

whence

I/ V 2 L _ L2 12 )I fvR=-_ \ETr -X (7.62)

Substituting for L_, Ln, L_ from (7.16) and for V_ from (7.8) and (7.3), using

(7.9), we obtain

8V R = _" V; (¢%6w -- (abSu.) + L: ((anSO_ -- (og80n) +

+ L n (¢o_50_ -- to_GO_)-F L_ ((a_89 n -- (%60_)] ds -F I,.

(7.64)

where

d d (_0_)] ds. (7.65)l, = [v_d (suO+LLd (8oO+ Ln_-;(aOn) + L_-_

tan : tntoae. --/to n, (oh ----liar. -I- rnla). }6u_ = m16u_ + ltSw, 6u n = mlbm -- l_6u,, ' ( 7.66)

I_ = COS(_, b), rn, = cos(_, n). (7.67)

It is assumed that the functions in the integrand of (7.65) are continuous on

the closed contour F. Integrating by parts, we find

(7.68)
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We can thus rewrite (7.64) as follows:

S [ OV; col __ aL; _6VR= V; C%,6w -- %6u,_) -- _ 6u; + (¢o,lL_ -- _ n Os ] 60; +
|

dL, \
%L_--w;L_--d_ - 60 nds) l

The magnitudes 60g and 6_ n are found by varying Clebseh's equations

(7.1) and (7.2). Substituting the result in (7.69/, we obtain

(7.69)

+ (o,._

OLd\ d+ [(¢%L_--o;L.+-_-)O-_(6un)+

Ol_ d

(7.70)

Integration by parts of the second integral in (7.70) yields

+ -_-]+

(7.71)

where Oil I and¢2I I are given by (7.21).

We substitute (7.71) and (7.60) in (7.53), and equate to zero the

expressions in braeesbefore the independent virtual displacements and

rotations 6ut, 88t, bun, and 6w. We thus obtain the following four boundary
conditions at the joint between the shell and the thin rib:

q-N v_

8'n=c%V t "4- ¢, [¢otL,-- a)_L_-1-_s Ln] +

"l-¢'[°cLn--°nLt--_'_ LL]

(7.72)
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M . .= mnL_--(%L n --ff__ [

OL ]

Q'=--Q,.V_--cI,,[.,,.L_--6,tLt+ _ ,]+

"F O: [ o_;Ln -- " a&% L t- -_ ]

(7.72)
( c ont' d)

If external forces T o, So, Qo and moments M 0are applied to the rib• we

must in (7.72) replace

r'. by T'. -- TO, S_ by S_-- S° I

Q_ by Q:--Q° M. by M,,--M ° I" (7.73)

Conditions (7.72) then become identical with (7.23).

§5. INFLUENCE OF A STIFFENING RIB ON THE

STRESS CONCENTRATIONS IN A CYLINDRICAL

SHELL WITH CIRCULAR HOLE

As example of the use of the boundary conditions derived in § 2 for a

shell with reinforced edge, we shall consider the stress distribution near

a "circular" hole (I')of small radius Q --Q0 located on the mantle of a

cylindrical shell of thickness h (Figure 102). The edge of the hole is

reinforced by a thin elastic rib. One of the principal axes of inertia of

each rib cross section lies in the middle surface of the shell. The shell

is loaded by a uniform internal pressure P0. This problem was solved by
A.I. Lur'e ]67] for a nonreinforced shell; our solution is based on his

work (]154, 156/). When the shell has no hole• the stresses are SL =ph,

• where 2p = q = _-_ (R is the radius of the cylinder).S,

f

i

FIGURE 102.
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We solve the problem (]68], Chapter IV, §§8,9) by determining the

complex stress function o which characterizes the additional state of stress

due to the hole and rib. Using polar coordinates(_k), the momentsM 0, M_

and the forces S_,, S_,_., S_., O_, in the shell are

Se = I h(p 4- q) 4- I h(p--q)cos2_,--

1 0 2

S O. = _.h(q-- _V 12(1 --v _) _ _-'0k hllrl

1 1 D 0 _

S_. = -._h(p + q)- _-h(p--q)cos 2),- _- 1/12(1 -- v2)_i Im a

1 0 1 0 2

(7.74)

(7.75)

where

A 02+±.0_+_ 0, eh,----OQ'-' Q 0Q • 0-_, D-- 12(1__v2_,

EisYoung's modulus, v is Poisson's ratio.

With an accuracy up to squares of the small parameter 1_ =1/ 3(1 --v 2) ×

!
× __ we can write

2 V Rh

2 A (,If (_ -1-,' )----I CO(' "J-(_O$2_.'--2FI" _--_'COS'_.-j-Im o = -_- o _o

[+ °'4- [_ CoQ2(I + cos 2_.) --_ Ao(2 4- cos 2_.)+

, 1 2 F.. _ cos 2___ IC, (! 4-cos 2;_.)1, (7.76)4- --2-A, (In _-- 4- ¥ ) -1- }- B_ --

w=Reo=_- _--AL--2y'BI+DI-- F,+Ao 2Q_ln +

+._,o,__o.)+....,._._,.,,,._+_.o.,,__,.._o_..)+
4-]Ao,'(lnQ_- 4-,') -_Co,'(I---In_o--,')+D.--2E._ -.._

-'-] (°',
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where

y' = In W°_ in y = 0.5772|6. (7.78)
V-_'

The function a differs from Lur'e's function [68/ only by the real term

2A_ e'-Inff0-._ The 12 unknown coefficients of the function o will be

determined with the aid of (7.42). Let the cover over the hole be of such

design that only shearing forces are transmitted to the reinforced edge of

the shell. Hence, in (7.42), we can set

So = To=RIO=0, qo=_ PoQo (7.79)
2 '

the shearing forces Q_ being in equilibrium with the resultant of the

pressure P0 acting on the area of the hole.

We shall first express the displacement components uQ and u_ through

the stress functiona. Setting

x = ecos_., y=Qsin_., (7.80)

we transform the strain components in cartesian coordinates (/68/, p. 182)

0u 0v w 0u 0o

-- = _..=_+ (7.81)

into the strain components in polar coordinates

eo = -_- -Jr_ sin'),, (7.82)

1 au_ -_-+-_cos 7., (7.83)e_= _-.-_- + "° w ,

eo), = _'1 Ouo_at Ou),aQ m,Q k RW sin _,cos_,. (7.84)

Multiplying (7.83) by Q and then differentiating with respect to Q, we
obtain

0_7, " OQ + R" w + Q cos)7..
(7.85)

Subtracting (7.85) from (7.82), we find

a w 02u_ 1( o_,)r_ _ _ (Qe_.)= _- sin' _. 0tx}_, R w -Jr-(} "_- cos'7..

Differentiation of (7.84) with respect to X yields

I 0

a --_._(u_ ouo'_ a'uo 1 o

(7.86)

(7.87)
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Adding (7.86) and (7.87), we obtain

e r._ ae_ a

In addition, by (7.83)

(7.88)

_-\_ k j - t_, (7.89)

Before substituting (7.88) and (7.89) in (7.42), we shall insert the stress
functiona. ByHooke's law,

I I

2 (I + v) S_.
(7.90)

Substituting (7.90) in (7.89) and (7.88), we obtain, respectively,

I /Ou_

L--_(S_ --vSo) -- _- w cos _, (7.91)

1 a au_ 1 +v e O |
Q-"a_ (u,- -_-) = _ (S_- S_) + _._ (S_- ,_S_)-

2(1+v) O w 1 _ . O Ow 2 / (7.92)_- _ So_-k _- cos2_ + _-.-_- s,n 2_.-- _- 0-_o_ _.

Substituting in the right-hand sides of (7.91) and (7.92) for So, S;.So. ,
and w from (7.74) and(7.77), we obtain

1 [Oux ) 1-- v 1+_" _-'_" + ue =_(p-l--q)-- --_E-- (p -- q) cos2_ --

_-Reo.cos _.+_ [Q O0 +_ Ok_ 0(2" hno,

I c)[ 0%\ l+v, , aD[! O+= +

+ (3+ _)_-_ o¢ (2 +_)_-'o_.'---_-%-_- _mo+

+ _- [cos 2_, O . OI + sin 2_,._ -- ee_ i,_] Reo,

(7.93)

(7.94)

where

(, = 1/WO - ¢). (7.95)
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Substitutionof(7.93),(7.94),(7.74),and(7.75)in (7.42),taking(7.79)
intoaccount,yieldsthefollowingboundaryconditionsat e=e0for the
complexstressfunctiona:

{_,_ i o ± a' I l'v a, m ,, o

.{_6a[2q-v o_ . 85 3+v 04 + a4e o_'a_+ea--__---_'_ " _-

Q a3

I a, a _-4) +-- _-'8_Q]I Im ° -- 8_' {c°s 2k [ 63(5 a_-}- 2Q0-Q 2

] [! a_ a 2ea__fi +

I ¢ _ a, I [Qo_o ,,6,(I - _) 1
+ys,-y ,a---Z_jRoo=tTb _ ]Co+q)+

[ao_ 4a . .. aa, v)](p-- q)cos2_.,+ [-_-- _o,_l + v) + 2--_(I+

rof, r,,. ,, o,-'-°, o£]÷Le a_. +_-_

1 _ , 3+_ Oa _ 2+v

--Q'_£EE-]} im o- 8p {cos 2_. O e[6a(3_-_---_-- a_ _ l " 81 +
2 6 O_ a 1+-'o  oo:
a_ 2a a -b v) 6,.] (p-- q) sin 2_..'= [5"5 +E_ (_ + v)8'--E_(l

l(v__t,, 0'w (v_8,,0_ + a'.w + O'w--_,)0--_--+ Coo-_- a,o-_-r=o.

o"-.w ! ow _ o.xv_o_- + _-- _.-_- + (2-',, +,h + _;)o--M_-

_o Otw 1. _w Po_- (3--v+_,,)_,-+_oO, o-#-.-_- d =o,

(7.96)

where

A C B E, FOo ( 7.9 7)_' =_,_' _' = _-T_' _' = _-T_ _' = T'

We now substitute in (7.96) from (7.76) and (7.77) for lma and w, and

equate the coefficients of [3. and [_ on both sides of each condition (7.96).

(This is done separately for the free terms and for the coefficients of

sin 2_. and cos 2k orcos 4_., respectively.) We obtain a system of 12 algebraic

equations, from which we find

an_° Cn (1 + v)a. _ (1 _v)8_ (7.98)
Ao = 4-Eh- " -F q) (1 + v)a. + (1 + v) _,
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where

anQg
Co = 2Eh-_o Ov-- q) ( 1 -I- v) [a 2, -]- a, (8+ -I- 453) -- 125_5d,

a_Q_

Fx = -- _E-h_-o (p -- q)[(l -I- v) a2."l-4% (3 F v) _3 -- ao(I -- v) 64 --
-- 12(I -_-v)bj5 d,

a0_( 1 / a" (I q- v) --(1 --v)54
A, = -_ _Ao -- -_ Co/ (I -F v) (% + _)

cl = _-_o(Co-- Ao)(a_.+ 4a.8_+ =._,-- 12_.+_,-- 12536+)(l + v),

aQ+o(Co-- Ao)[a2.(1 -}-v) -F4%(3 -I-v) '_3-- a. (1 -- v) 5, --r, = --
-- 12(i -}- v)83bd,

oaQ_ ( Ao - !A,= -_ poR--. y Co/,

0°_----- I'l )Co-{- 2(t -- 2¥') Ao] --B,= 2 (i__v _l_5,)[,.-Fv --5x)[(2y'---12-

_ agQ_q |
-- (3+ v -- 6,) --_-h---I'

D,=

E, = -- _ (%Ao+ %Co)-- 2//,, M_= _ (%0_Co+ _,F,),

o=Vl2(l-vSj, a.= 12(l--v)_,

au = (I -I- v)a 2•+ a. (3 + v) (45_ + b+}-{- 12(3 -- v)5_5+

as = (i -- v) [4¥' (! -- v)+(5 -- v)I+f(I--v) (4y'+3)+ 2 (3 +v)l 5, +

-[- [2(! -- v) (2y' -t- i) + (3 -F v)lS=-- 35=5=(1 -t- 4y'),

[ ' ]a=----O--v) 4y'(l--v)+ _-(13--'v) -F

I

-}- [4 (I -- v) y' -1- -_- (25 -- v)] 5, -[-

+
a=------6y'(I-- v)_-- (9-- 4v+ 3v_+[6y' (v-- 3)+(3v-- 13715(-b

+ [6y'(I-Fv)+ (3v+ 5)]5=.-}-9(I-[-2y')5_5=

el= 6¥' (1 -- v)Lb2 (v' -- v-l-4)-}-[6y' (3 -- v)+2 (5 -- v)] a, --

-- [6¥'(I + v) -{- 2(2 + v)]5= -- 6 (I @ 3y') 5_5=

¢_s= (I -- v) (I -- 3v) -- (5 + 3v) 5, + (I --- 3v) 5. -- 455=5=

a= ----4[30 --v =) "i- 05 "I- 3v)5_ -}- 3(3 -{- v)5= + 455=5=

o_ = (19v- 3 -- 10v =)-- (9 -- 10v)5_ + (6 -}- 10v)5= + 1508152

a_ = 6 [(6v -- 5v' + 3) + (5, + 5=)(9 -F 5v) + 755,5=1

a, = (1 -- v) (3 + v) + (5 + v) (5=+ 5=) + 35=5=

axo = (1 -- v)(3 + v)+ (9 + _)(5_-_-5=)-F 155_5_

(7.98)
cont_d

(7.99)
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Setting6,=6_=53=84=0,in (7.93)and(7.99),weobtainthesolutionfor
thecaseconsideredby Lur'e J68/, when the edge of the hole is not

reinforced:*

Ao= 4_(p-_-q). Co=_(p--q)

I nQ°_tf"

FI = -- _ _ -- q), F_ -- -- _- _o -- Ao)

(7.100)

A I _ 0,

Qo' {_ 14v'tl-- _)+ (5--,,)Y--

--Col4V'(I -- _) +/(.3--v)l I

,, = 2 + ½) Co+,o --2f, Ao]--

• ane2oPoR_
- (3+ _,1-EE.-_- I

Q_ {Ao 16y' (I --v)_+E. "b 2H_ 12(1 -- v) (3-}-v)

+ (9 -- 4v + 3v')] -- Co [6¥' (1 -- v) _"+ 2 (v 2 -- v + 4)]}

[c ]//, = _[ 00--3v)-- 12(l +,0F,- _

e°_ [Co (19v -- 3-- lOv _)Ms -----1440 (l --v)(3-I- v)

+ 6 (6v- 5v' + 3) F.- _]_•]

(7.100a)

In the limit 5,= 5,= 5_= 6,=_o we obtain from (7.98) and (7.99) the

coefficients for the case when a perfectly rigid rib or washer is welded to

the edge of the hole:

_=_o(l--v) a_e_(l + v)
Ao = 4Eh ( ] -p v) (p -{- q)' Co= 2Eh (3 -- v) (p -- q)

a,O,(l-F v) _(l--v) (Ao_l Co )FI = 8Eh (3 -- v) (p -- q)' Aj =- 2 (1 + v)

aOo_(l + v) =co_(l + v)
c, = 2¢3-- v) (Co--Ao). F, = -g_-_-v_ (--Ao+ Co)

a=Oo'pon ( l )A== 2Eh h -- Ao---_Co

B_ = Co -- '2y" + 2Ao (2V' -- I) at Eh

DI = %--_02[Co(12y ' d- i) -- 3Ao (4¥' -t- i)]

,, (7.101)

* An inaccuracy exists in equations (4.9.22) and (4.9.15) of Lur'e's solution /68/.
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E eg , ]2 + 2H2= T-212Co (3y + 1)-- 3Ao(l + 2y')]

Q4 _4 / "
lo k _o t

(7.101a)

This case was considered in /95[ and [176/, but the solutions obtained

contain some inaccuracies. In the former solution the boundary condition

w=c at Q=_0is not satisfied(c is a given constant), while in the latter the

equilibrium conditions for a rigid rib are not satisfied. (Integration along

r of the generalized shearing forces Q_ does not yield a@_p0.) Similar

inaccuracies are also contained in the solutions obtained in /96/ and /97/,

which deal with the problem of stresses in a cylindrical shell with a

circular hole whose edge is reinforced bya wide elastic rib. Furthermore,

the equilibrium conditions are not satisfied for the elastic stiffening rib.

'IABLE 31

b k_ k_ kn k_

0
0.5
!
2
5

10
20

100
380

0.000
0.309

0. 502
0.736
1.031
1.190

1.279
1. 253

1.064
0,783

0.000
0.259

0,322
"0.300

0.119

--0.059
--0.204
--0.374

--0.372

--0.213

2. 500
1.976

1.680
1.3'14

0.942

0.726
0.585

0.420
0.331
0.235

2.920
1.661
1.081

0. 551

0.110
--0.035
--0,093

--0.126

--0.116
--0.064

"l ABLE 32

II llJ
_ /0.08010._,5J, o._lo. 9_10.24_10.2_0._11o._so0._

| p

! p

1. 364

0.409

_,s t--We calculated the normal stresses a0, = h _ and a_ = Sa((7.74)) at the point

P(e0, 0) on the middle surface of the shell for the case of a stiffening rib

having a rectangular section with sides b andh_. These stresses are

Oe. = q[ k,-F k, -_h ) . o_._ = q i_ -_ ,_, --R-h-,] . (7.102)

where the first terms correspond to plane biaxial tension.

The coefficients k,. kz. ks, _ are given in Table 31 for various values

of 6, with b = 0.1Q0, v = 0.3, Q0----- 15h, h_=3h, h1=2b, where cr0e2 and ;are,

respectively, the rnoduli of elasticity of rib and shell.
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The normal stresses 0"P0zand 0"_2Pinduced at P(Q0,0)°n the outer surface

of the shell by the bending moments /Hv and M)` ((7.77)), were calculated for

l

_0= -2-F_

The results are given in Table 32.

The total stresses

a == O'QL-}- Cry2, 0")` _ _TU"_-0"),2

at points P(Q0, 0)and N(Q0, ,_)on the outer surface of the shell are given

in Figure 103 as curves of the most characteristic magnitudes la_ (curve i),

-_-o:(curve 2), and _P(curve 3), where

b

P P 1.45q. The stress-concentra-For×_0.14, i.e.,_3.25 , we have a =o)`

3.31

tion coefficient for P({_o. 0) has thus been reduced by a factor of 1_= 2.28

through reinforcing the edge of the hole by an elastic rib.

q

3._
3

?

f

0

3

-'-"r---------

_2 O_ R8 08 t

FIGURE 10:_.

b

Y

¢

FIGURE 104.

§ 6. SHALLOW SPHERICAL SHELL, RECTANGULAR

IN THE PLAN, WITH REINFORCED EDGES

Consider an elastic shallow spherical shell whose projection in plan is

a rectangle with sides a and b (Figure 104). The shell edges are reinforced

by thin elastic ribs possessing torsional and tensile rigidity and flexural

rigidity in two planes. The stiffening ribs are welded together at the

corners of the rectangle. The reinforced edges of the shell are hinged to

a rigid foundation. A uniformly distributed load q=const, acts on the

upper surface in a downward direction.
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The complex stress-displacement function (cf., for instance,

§ 17, Chapter I)

]/12(I --v 2)
, (x, y) = to ff t_ = w Eh_ iO,

1881,

(7.103)

through which all stress and strain components of the shell are expressed,

must in the case considered satisfy the differential equation

AA, -- 2ik'-A, = _ (7.104)

and certain boundary conditions.

Here, w is the deflection toward the center of curvature of the shell,

¢) is the stress function corresponding to a plane state of stress, h is the

shell thickness, D = EMII2{l--v 2) is the flexural rigidity of the shell, R is

the radius of curvature of the shell, A is the Laplacian operator,

k,= 3(IV-SW--_')
Rh

Since the structure, the load, and the boundary conditions are

a b
symmetrical with respect to the axes x=_-, y=_, we can represent the

general integral , of the nonhomogeneous differential equation (7.104) in

the form ]47]

, (x, y) = % (x, y) + % (x, y) = '2 (x, V) + a'z, + _'o v =

,o(_,v) + ,,',.. + It,.. + _, _ IA_Z;,..(I_,_)+B._'n_o..(l_,_)]×
n_l,3,.,.

x(o),X sin n_q -I- _ [C,._2.,,, (a, i]) + D.¢_ go_,,(a. _l)] sin m_g,

m-_l,3...

(7.1o_)

where %(x, y) is any particular integral of (7.104), a'. _', A_, B_, C,n. D,, are

complex integration constants, to be determined from the boundary

conditions, _= xa 'tl-- by__ a=--mnb _= nna

ch (1 +i)ka(l--2_)
1 2 t

°s _ 2--_-" ch(l + i)ka ' (_u=2"2-k-_
2

t'.¢, _ J

I [ _2- oh. ---

ch(l +i)kb(l --2q)
2

ch (_l+ i) kb '
2

(7.106)

309



Wetakeas particular"integral%(x,_)thesolutionof theproblemof
bendingfor thesameshellwithoutstiffeningribs, subjectedto a load
q= const, and hinged at the edges to an inextensible support 47/:

oa

_o(X,y)_ _-_fD.:ns2_'II+ (-- j)._4-,}

! 2

sm _ 1 Smch

I

Sm

sin m_.

(7.107)

The function _(x, y) defines the additional state of stress arising because

the actual support conditions at the shell edges differ from those of a

simple support.

The boundary conditions for the reinforced edges of the shell are

1
obtained from (7.49) forQ=co, Setting _-=0 to simplify them, we obtain

finally:

at x= {o

at y=

• r 050 0_0 1 0_-0

{-am-¢+u+ 4.eh

a_

::F C _-_-I- D-o_- = O

w=O

; (7.108}

[ a,:o,2 + @+ 2) a,'a,a J = 4- Eh_,_=-

O.XD O.'k'll\ 0_0e: _ -_o-_) = T ehW@

O_ O_
q: c_, 7 + n_r = 0

w=O

(7.109)
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Theuppersigncorrespondsto theedgex=a or y=b, and the lower sign

to the edge x=0 org----0.

If we set/,=l andre,=0 in the expression (7.30) for _, so that one of the

principal axes of inertia of the rib section lies in the middle surface of the

shell, we obtainS'=,4. In this case (7.108) and (7.109) coincide with the

corresponding boundary conditions given in ] 47/.

In addition to the above boundary conditions certain special conditions

must also be satisfied at the corners. These are the equality of action and

reaction, i.e., the equality of the internal forces and moments acting in

adjacent sections of the two ribs meeting at the corner. It suffices to

satisfy these conditions at one corner, for instance at x = g = 0, since,

l similar
because of the symmetry with respect to the axes _ -- _ =-_,

conditions will then be satisfied automatically at the other three corners.

¢

FIGURE 105.

These special conditions are:

1) The twisting moment LI ') acting on section P, of rib PsP4 is equal to

the bending moment L_ ) acting on section P, of rib P,P,, and vice versa:

L_2'=L_), q') = - L':'. (7.110)

The positive directions of these vectors are shown in Figure 105,a.

2) The longitudinal force V[n acting on section P4 of rib P_P, is equal to

the shearing force V_,2) acting on section P, of rib P_P,, and vice versa:

_2)= -.V(°', V_"O)= __VC2)_n• (7.111)

The positive direction of these forces is shown in Figure 105,b.

3) The bending moment L_I) acting on section P4 of the rib PsP4 is equal

to the bending moment L_2_ acting on section P, of rib P4PL (Figure 105,c):

L_' =L_ _). (7.112)

The moments L_ ), L_n, L_n, entering in (7.110) to(7.112)are by (7.16) and

(7.14) for o_ = _0_=0_¢= 0 :

l_)= , rI')_ --,(n n, O'a
•:'_ T,"l_n =P _J

I
__,_,) ,_(,)_ 0'u I

L_ ) .... ,"_ -- ""q -- v a_- I"

COw

(7.113)
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Similarly,

L_2)= _, 8'0 /(_) _ L__ -= C 8_ (7.114)
P _x,' _" = VNr' axa----_"

whereu and v are the displacement components in thex- andy- directions,

respectively.

The shearing forces are by (7.6) and (7.17):

V(nl) _ i,,-(I) n i,,o) a, _u 1

¢ =m,_"--,,_:'=V_ i

(7.115)

Substitution of(7.113), (7.114), and (7.115) in (7.110), (7.111), and (7.112)

yields:
atx=y=0

Ou , O_u Ov , O_o ' (7.1 1 6)

/_v 0'u (7.117)
x_- = 0-_-"

Condition (7.117) is fulfilled automatically because of the first two

conditions (7.116). There remain thus four conditions for determining the

real and imaginary parts of the complex coefficients a* and _" appearing in

(7.105).

Conditions (7.116) are expressed as follows through the stress function

¢(x, y) :

O' + v _@ 1

_c a%_a_= _i_

E_ fa'O 040

=p [o,_-_+ (2+ _)-a_-]

,_ a,_, r[_+,_+,)0__]

• (7.118)

Substituting (7.105) in (7.118), we obtain a system of four real equations,

from which we find

ch ka + coska s" chl_b+coskb . (7.119)
a'=2(shka+sinl_a) lb v = 2(shkb .{_sinkb)uz,
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where

2_'(i -- i) .. (I -- i) ka.

,_ =- _,F(i: _)m-----_tm [ 2 8--_x=-F (I + v)_],._ --

2 2k' _ ( a'_ \ [_'%-_-{T'_c_a-_) +'mL_, +_ +_1_11
axoy Jl,-e-o'

_'(I--i) [ a-_ _ .i)'%1I,=- E,pc,--;)'_'_lm 2 +0._%-_xsJ._.0_

°
We have thus expressed a" and 13" through the coefficients A.. B.. Cm. D= en-

tering in _8x/--_-O--O--O--O--O--O-_T_l].__.0 [of. (7.105) ]. The coefficients A., B., Cm, Dm are deter-

minedfrom (7.108_ and (7.109). Substituting the functions w(x,y) and_(x.y)

((7.103)) in these boundary conditions and using (7.1051, we obtain two groups of

equations expressingthe conditions at x=/_andy--!b , respectively.

Omitting the lengthy calculations by which ;t,.(f_, _), _/.,.(a, q) (j= 0, I, 2 ... 6)

and some other functions are expanded in trigonometric series, we obtain

an infinite system of linear algebraic equations in the unknown coefficients

A., B,, Cm. D_:

{Cn )'lm An T 1;5,,,(P, 0) -- (v + 2) ;3., (P, 0l +

nn s nn = £h 0)] ++".':[(-4o, o,+
+ --

m

+a-_ s Iv+2)(l+s=)mnO _--_+ O= _+(v+2)n a--_+

+ 4E'h _. ,L7 16#n Is' = ]}
m

Eh

+ BnIn ["_ _O.n_' Eh Eh _-_ 4an = -o)-- _ _:,..(p,o)]--_-:fi,_/,_,--_-c-,.+

" ]Re A,, 1;4.,,(_,0)---_- _;_.,,(J_,0) --aJ._-_;,.,, (p, 0)--

_1 4ran= C _1 4ma_n _ D 4 .. _ 16qaa*n |
- A_ ,_,= " + _.--_ _"_"--_'_" - ],o_'_ l = °'

m m m -
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where

b _ 2 21 • ¢_[3' _0

(n = 1, 3,5 .... 1,

- L _ b4_2 mtTnt14¢14AF

+(v-[-2) n.. 2 3_] 4 _(nn)' [b _ _]4m/. 2___b.____,_,+t'.),,ma EE+ _ t_._+(_+2)m -E_., +
n

(=)-}-C., -_ [_s,m (a, O)-- (v -] 2)_3m(a,O)J+

. --(v-F 2)(n_)_,.. (a. 0}+_7 _o_,(m O)]-F

4Eh . 4q ,. (a,O)-k(v+ 4q
+ nms_,__ v. -- D"a%" 2) _ _l,., (a, O) +

4Ehqa _ f l o,]}:o

2 rvm=

Eh _ Eh 4_m _

n n

8"_2ia " " 4"_qa r ' " " ] _h 4qa2 }_' +_[ ,'-E- _o.._", o) _E,F D,,,_ _'" (`''o) = 0

R _ _4nn? +Z 4n_"-m 2

m_ D
--'-'-_,_ _- _l,., (a,O)--+C..[-- --a-"," (a, 0)+-C-,,.,. (a, 0)] ,.. , m_

D . 4 4qa 0)}=0,---ffl_ "_-_ + D--_-i-U_,..,(a,

'qa' r i ]}-[- _ L_ -- _.,,, (a, 0) = 0 (m ---- l, 3, 5.... ),

' [th a ' _']

[th±
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_pH,. @, o) = (I + t¢)g,+2..(O, o) + t2g... (_, o) ]Co

I O, I),

_,,+,.. (a, O) = (I + s_) _.+_,. (a, O) + s2., _.,_(a, O)

i nto_ _2 klQ_

6.,,, = ( n 2 -F m'b' _ 2 . k_b 2-de- j + 2_ a-cE,(n'a' + ,,'b').

The coefficients A., Bn, C,., Dm can be found approximately by solving

this system by the reduction method.

Example of an approximative determination of

the moments and forces

Retaining only two terms in each series (7.105), we obtain a system of

16 equations for determining 16 unknown real coefficients. We analyzed in

this way a shell whose projection in plan was a rectangle. The edges were

reinforced by a metal welt. The following data were used:

a=37 cm, b=27cm, h_-_0.45cm, R=76cm, v----0.23.

E =0.6946.10edyn.cm 2 E z = 2.106dyn.cm 2 q =Idyn.cm 2.

The stiffening rib shown in section in Figure I06 had the following

rigidities in tension, torsion, and bending in two planes:

EIF= 2.4932" 10edyn, C = 322404 dyn • cm 2, _'= 878508 dyn, cm _, _ =

805941 dyn.em 2.

The bending moments Mx, My and the longitudinal forces Nx, N u acting

along the axes of symmetry _I _ 0.5 and_---_ 0.5, have been plotted in

Figures 107 to 109.

.

,-,---.._
"80

0 02 04, '1

FIGURE ll)6. FIGURE i07.
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FIGURE io9.

It is seen that in the case considered the forces normal to the edge (Nx

at the ends of the large axis _1 ---- 0.5 and Ny at the ends of the small axis

= 0.5 ) are negligibly small, namely

N x=-0.198dyn.em at {T1=015;

N w =--0.927 dyn •em at = 0.

On the other hand, the normal forces acting at the same points on areas

normal to the contour are considerable:

N y = 41.61 dyn. cm at 1_= 0.= 0.5;

/_ = 05,
N x=53.87dyn'cm at /_l=0.

The bending moments Mxand My are small at the shell center, being

largest at the edge. *

A comparison of these moment and force diagrams with those for a

nonreinforced shell(cf. /41, 42/) shows that the reinforcement affects

considerably the distribution of moments and forces in the shell. By

suitably selecting the cross-sectional shape and dimensions of the stiffening

ribs we can obtain an optimum stress distribution in the shell; this

necessitates, however, very involved calculations.

§7. OTHER PROBLEMS CONCERNING THE

REINFORCEMENT OF SHELLS ALONG THE

EDGES OF HOLES

Few works have been written on the stress distribution and holes in thin

shells. A survey of papers published on this subject up to the end of 1961

was given byG. N. Savin (/119] to/121/). A.N. Guz' (]35, 36/), recently

obtained approximate solutions for the stresses in a thin shell having an

elliptic, triangular, or square hole (with rounded edges).

Using the method of "boundary perturbation," Guz' solved the problem

of the elastic equilibrium of a shallow shell, whose projection in plan forms

a circle, having a central elliptic, square, or triangular hole [37/.

V.G. Buivol [7[ solved, by the method of successive approximations,

the problem of the stresses in uniformly loaded shallow spherical shell

having four equal cyclical-symmetrically placed circular holes.

* Calculations by A.S. G upalo and Ye.I. Lun', Department of Mechanics of L'vov State University.
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The stress concentrations around holes in shells are usually reduced by

reinforcing the hole edges by elastic elements. Yu.A. Shevlyakov ]177],

M.M. Pirogov ]99,100], and A.N. Guz' ]38] considered the influence of

reinforcing elements like rigid and elastic washers on the stress

concentrations around circular holes in spherical and cylindrical shells.

Boundary conditions (7.23) can be used to solve problems on the stresses

in thin shells having holes whose edges are reinforced by thin elastic ribs.

Inverse problems similar to those solved in Chapter V were discussed

byMossakovskii andKvash ]80] (cf. also ]49, 50]), who considered the

neutral reinforcement of hole edges in symmetrically loaded shells of

revolution subjected only to membrane stresses, and in a spherical shell

subjected to bending.

V.V. Vasil'ev (cf. "Prikladna Mekhanika," Vol. 7, Nos. 3,4. 1961)

investigated the axisymmetrical elastic-plastic state near the edge,

reinforced by a rib, of a circular hole in a shell of revolution.

Papers ]21, 22, 24, I13, 202] are devoted to the stresses in a

cylindrical framework shell having cuts extending over an integral number

of elements.
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